
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 118

Awk - A Pattern Scanning and Processing Language
Programmer's Manual

Alficd V. Ah0
Brian W. Kenighan
Peter 3. Weinberger

June 5, 1985

Awk - A Pattern Scanning and Processing Language
Programmer's Manual

Alfred V . Aho

Brian W. Kernighan

Peter J . Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language that allows many tasks of information
retrieval, data processing, and report generation to be specified simpiy. An awk
program is a sequence of pattern-action statements that searches a set of files for
lines matching any of the specified patterns and executes the action associated with
each matching pattern. For example, the pattern

$1 == "name"

is a complete awk program that prints all input lines whose first field is the string
name; the action

(print $1, $2 1

is a complete program that prints the first and second fields of each input line; and
the pattern-action statement

$1 == "address" { print $2, $3 1

is a complete program that prints the second and third fields of each. input line
whose first field is address.

Awk patterns may include arbitrary combinations of regular expressions and
comparison operations on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns as well

. as arithmetic and string expressions; assignments; if-else, while and fo r
statements; function calls; and multiple input and output streams.

This manual describes the version of awk released in June, 1985.

June 5, 1985

Awk - A Pattern Scanning and Processing Language
Programmer's Manual

Alfied V. Aho

Brian W. Kernighan

Peter J . Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Bask Awk
Awk is a programming language for information retrieval and data manipulation. Since it

was first introduced in 1979, awk has become popular even among people with no programming
background. This manual begins with the basics of awk, and is intended to make it easy for any-
one to get started; the rest of the manual describes the complete language and is somewhat less
tutorial. For the experienced awk user, Appendix A contains a summary of the language; Appen-
dix B contains a synopsis of the new features added to the language in the June, 1985 release.

1.1. l'mgram structure

The basic operation of awk is to scan a set of input lines one after another, searching for
lines that match any of a set of patterns or conditions that the user has specified. For each pat-
tern, an action can be specified; this action will be performed on each line that matches the pat-
tern. Accordingly, an awk program is a sequence of pattern-action statements of the form

pattern { action }
pattern { action }

The third program in the abstract,

$ 3 == "addrase" (pr in t $2, $3 1

is a typical example, consisting of one pattern-action statement. Each line of input is matched
against each of the patterns in turn. For each pattern that matches, the associated action (which
may involve multiple steps) is executed. Then the next line is read and the matching starts over.
This process typically continues until all the input has been read.

Either the pattern or the action in a pattern-action statement may be omitted. If there is no
action with a pattern, as in

$1 == 'name"

the matching line is printed. If there is no pattern with an action, as in

{ pr in t $1, $2 1

then the action is performed for every input line. Since patterns and actions are both optional,
actions are enclosed in braces to distinguish them from patterns.

1.2. Usage
There are two ways to run an awk program. You can type the command

awk 'pattern-action statements' o p t i o ~ l list of inputjiles

to execute the pattern-action statements on the set of named input files. For example, you could

awk ' I print $1, $2 I ' data1 data2

If no files are mentioned on the command line, the awk interpreter will read the standard input.
Notice that the pattern-action statements are enclosed in single quotes. This protects characters
like $ from being interpreted by the shell and also allows the program to be longer than one line.

The arrangement above is convenient when the awk program is short (a few lines). If the
program is long, it is often more convenient to put it into a separate file, say myprogram, and use
the -f option to fetch it:

awk -f myprogram o p t i o ~ l list of irsputfilcs

Any filename can be used in place of myprogram. @
1.3. Fields

Awk normally reads its input one line at a time; it splits each line into a sequence of fields,
where, by default, a field is a string of non-blank, non-tab characters.

As input for many of the awk programs in this manual, we will use the following file,
countries. Each line contains the name of a country, its area in thousands of square miles, its
population in millions, and the continent where it is, -for the ten largest
(Data are from 1978; the U.S.S.R. has been arbitrarily placed in Asia.)

USSR 8650 262 . Asia
Canada 3852 24 North Mer ica
China 3692 866 Asia
USA 3615 719 North A m e r i c a
Btazif 3286 116 South lbrerica
Australia 2968 14 Awtralirn
India 1269 637 Asia
Argentina ~ 1072 26 South America
Sudan 968 19 Africa
Algaria 920 18 Africa

countrie; in the world.

The wide space between fields is a tab in the original input; a single blank separates North and
south from Amtrica. This file is typical of the kind of data that awk is good at processing - a
mixture sf words and numbers separated into fields by blanks and tabs.

The number of fields in a line is determined by the fieM sepratop. Fields are normally
separated by sequences of blanks andlor tabs, in which case the first line of countries would
have 4 fields, the second 5, and so on. It's possible $0 set the field separator to just tab, so each
line would have 4 fields, matching the meaning of the data; we'll show how so do this shortly. For
the time being, we'll use the.default: fields separated by blanks and/or tabs.

The first field within a line is called $1, the second $2, and so forth. The entire line is
called $0.

If the pattern in a pattern-action statement is missing, the action is executed for all input
lines. The simplest action is to print each line; this can be accomplished by the awk program con-
sisting of a single print statement:

so the command e

awk ' { print 1' countries

prints each line of countries, thus copying the file to the standard output.

In the remainder of this paper, we shall only show awk programs. without the command line
that invokes them. Each complete program is identified by (P . n) in the right margin; in each

case, the program can be run either by enclosing it in quotes as the first argument of the awk com-
mand as shown above, or by putting it in a file and invoking awk with the -f flag, as discussed in
Section 1.2. In an example, if no input is mentioned, it is assumed to be the file countries.

The print statement can be used to print parts of a record; for instance, the program

{ print $1, $3 } (P.2)

prints the first and third fields of each input line. Thus

awk ' { print $1, $3 1' countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 639
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in the print statement are separated by the output
field separator, which by default is a single blank. Each line printed is terminated by the output
record separator, which by default is a newline.

1.5. Formatted Printing

a For more carefully formatted output, awk provides a C-like printf statement

print f format, expr , exprz , . . . , expr,

which prints the expri's according to the specification in the string format. For example, the uwk
program

{ printf "XlOs %6d\nW9 $1, $3 1 (P.3)

prints the first field ($1) as a string of 10 characters (right justified), then a space. then the third
field ($3) as a decimal number in a six-character field, then a newline (\n). With input from file
countries, program (P . 3 prints an aligned table:

USSR
Canada
China
USA

Brazil
Australia

India
Argentina

Sudan
Algeria

With printf. no output separators or newlines are produced automatically; you must create them
yourself, which is the purpose of the \n in the format specification. Section 4.3 contains a fu l l
description of printf .

1.6. Built-In Variables
Besides reading the input and splitting it into fields, uwk counts the number of lines read and

the number of fields within the current line; you can use these counts in your uwk programs. The
variable NR is the number of the current input line, and N F is the number of fields. So the pro-
gram

(print NR, N F 1

prints the number of each line and how many fields it has, while

prints each line preceded by its line number.

1.7. Simple Patterns
You can select specific lines for printing or other processing with simple patterns. For exam-

ple, the operator == tests for equality. To print the lines for which the fourth field equals the
string Asia we can use the program consisting of the single pattern:

$4 == "Mian

With the file countries as input, this program yields

USSR 8650' 262 A8ia
China 3692 866 Asia
India 1269 639 A8ia

The complete set of comparisons is v , v - , *, -, == (equal to) and I (not equal to). These com-
parisons can be used to test both numbers and strings. For example, suppose we want to print
only countries with more than 100 million population. The program

is all that is needed (remember that the third field is the population in millions); it prints all lines
in which the third field exceeds 100.

You can also use patterns called '"regular expreasi~ns '~ to select lines. The simplest form of a
regular expression is a string of characters enclosed in slashes:

This program prints each line that contains the (adjacent) letters US anywhere; with file
countries as input, it prints

USSR 8650 262 Asia
USA 3615 219 North America

We will have a lot more to say about regular expressions in $2.4.

There are two special patterns, BEGIN and END, that '"match" before the first input line has
been read and after the last input line has been processed. This program uses BEGIN to print a
title:

BKGIU { print "Countries of Asia:' 1

The output is

Countpie# of Asia:
USSR
China
India

1.8. Simple Arithmetic
In addition to the built-in variables like N F and NR', awk lets you define your own variables,

which you can use for storing data, doing arithmetic, and the like. To illustrate, consider comput-
ing the total population and the average population represented by the data in file countries:

{ sum = sum + $3 } (P. 1 0)
END { print "Total population is", sum, "million"

print "Average population of", NR, "countries is", sum/NR }

The first action accumulates the population from the third field; the second action, which is exe-
cuted after the last input, prints the sum and average:

Total population is 2201 million
Average population of 70 countries is 220.1

Although awk can be used to write large programs of some complexity, many programs are
not much more complicated than what we've seen so far. Here is a collection of other short pro-
grams that you might find useful andlor instructive. They are not explained here, but any new
constructs do appear later in this manual.

Print last field of each input line:
{ print LNP)

Print 10th input line:
NR == 10

Print last input line:
{ line = $0)

END { print line >
Print input lines that don't have 4 fields:

NP I = 4 { print LO, 'does not have 4 fields" 1

Print input lines with more than 4 fields:
N F . 4

Print input lines with last field more than 4:
S N P . 4

Rint total number of input lines:
END print NR 1

Print total number of fields:
{ nf nf + NF)

END { print nf 1

Print total number of input characters:
{ nc-= nc + length(L0) 1

END { print nc + NR 1
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain Asia:
/Asia/ { dines++)
END { print nlines 1

(The statement nlines++ has the same effect as nlines = nlines + 1.)

1.10. Errors
If you make an error in your awk program, you will generally get a message like

awk: syntax error near source line 2
awk: bailing out near source line 2

The first message means that you have made a grammatical error that was finally detected near the
line specified; the second indicates that no recovery was possible. Sometimes you will get a little
more help about what the error was, for instance a report of missing braces or unbalanced
parentheses.

The "bailing out" message means that because of the syntax errors awk made no attempt to
execute your program. Some errors may be detected when your program is running. For example,
if you try to divide a number by zero, awk will stop processing and report the input line number
and the line number in the program.

2. Patterns,
In a pattern-action statement, the pattern is an expression that selects the input lines for

which the associa~ed action is to be executed. This section describes the kinds of expressions that
may be used as patterns.

2.1. BEGIN and END

The special pattern BEGIN matches before the f i s t input record is read, so any statements in
the action part of a BEGIN are done o n a before awk starts to read its fust input file. The pattern
END matches the end of the input, after the last file has been processed. BEGIN and END provide
a way to gain control for initialization and wrapup.

The field separator is stored in a built-in variable called BS. Although Fs can be reset at any
time, usually the only sensible place is in a, BEGIN section, before any input has been read. For
example, the following awk program uses BEGIN to set the field separator to tab (\t) and to put
column headings on the output. The second printf statement, which is executed for each input
line, formats the output into a table, neatly aligned under the column headings. The ENB action
prints the totals. No t i a that a long line can be continued after a comma.)

BEGIN { PS = "\tE
ptintf "XlOs X6s X5s Xs\nn,

"COUNTRY", "AREA", 'POP", 'CONTINENT' 1
(printf CXIOs X6d XSd Xe\nW, $1, 53, 14
area = area + 52; pop = pop + $3 1

(printf m\n%lOs X6d X5d\nm, '~AL', area, pop 1

With the file countries as input, (B.

COUNTRY
USSR

Canada
china
USA

Brazil
Australia

India
Argentina

Sudan
Algeria

20 1 produces

CONTINENT
Asia
North America
Asia
North America
South America
Australia
Asia
South America
Africa
Africa

TOTAL 30292 2201

2.2. Relational Expressions
An awk pattern can be any expression involving comparisons k twcen strings of characters or

numbers. Awk has six relational operators, and two regular expression matching operators -
(tilde) and I - that will be discussed in the next section.

In a comparison, if both operands are numeric, a numeric comparison is made; otherwise the
operands are compared as strings. (Every value might be either a number or a string; usually awk
can tell what was intended. The full story is in 93.4.) Thus, the pattern $3>100 selects lines
where the third field exceeds 100, and

less than
less than or equal to

equal to
not equal to

greater than or equal to
greater than

matches
does not match

selects lines that begin with an S, T, U, etc., which in our case are

USA 3615 219 North America
Sudan 968 19 Africa

In the absence of any other information, fields are treated as strings, so the program

will compare the fust and fourth fields as strings of characters, and with the file countries as
input, will print the single line for which this test succeeds:

Autralia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

2.3. Regu&u Expressions
Awk provides more powerful patterns for searching for strings of characters than the com-

parisons illustrated in the previous section. These patterns are called regular expressions, and are
like those in the Unixm programs egrep and lex.

The simplest regular expression is a string of characters enclosed in slashes, like

Program (P .23 1 prints all input lines that contain any occurrence of the string Asia. (If a line
contains Asia as part of a larger word like Asian or Pan-Asiatic, it will also be printed.)

If re is a regular expression, then the pattern

/re/

matches any line that contains a substring specified by the regular expression re. To restrict the
match to a specific field, use the matching operators - (for matches) and ! - (for does not match):

$4 - /Asia/ t print $1 1 (P.24)

prints the first field of all lines in which the fourth field matches Asia, while

$4 1 - /Asia/ { print $1 1 (P.25)

prints the first field of all lines in which the fourth field does not match Asia.

In regular expressions the symbols

\ - s . [I * + ? () :

have special meanings and are called rnetacharacters. For example, the metacharacters A and $

match the beginning and end, respectively, of a string, and the metacharacter . matches any single
character. Thus,

will match all lines that contain exactly one character.

A $roup of characters enclosed in brackets matches any one of the enclosed characters; for
example, / [A X] / matches lines containing any one of A, B or C anywhere. Ranges of letters or
digits can be abbreviated: /[a-zA-Zl/ matches any single letter. If the first character after the
is a ", this complements the class ss it matches any character not in the set: /[̂ a-zA-2 I /
matches any non-letter.

The program

$2 I - /^to-91+$/

prints all lines in which the second field is not a string of one or more digits (^ for beginning of
string, [0-91 + for one or more digits, and $ for end of string). Programs of this nature are often
used for data validation.

Parentheses (I are used for grouping and I is used for alternatives:

matches lines containing any one of the four substrings apple pie, apple tart, cherry pie.
or cherry tart.
* To turn off the special meaning of a metacharacter, precede it by a \ (backslash). Thus, the
program

will print all lines containing an a followed by a dollar sign.

Awk recognizes the following C escape sequences within regular expressions and strings:

backspaa
formfeed
newline
carriage return
tab
octal value dd8
quotation mark
any other character c Literally

For example, to print all lines containing a tab use the program

Awk will interpret any string or variable on the right side of a - or ! - as a regular expres-
sion. For example, we could have written program (P -27 1 as

BEGIN { d i g i t s a w"[O-g]+$m)
$2 I - d i g i t s

When a literal quoted string like ""60-91+$" is used as a regular expression. one extra
level of backslashes is needed to protect regular expression metacharacters. The reason may seem
arcane, but it is merely that one level of backslashes is removed when a string is originally parsed.
If a backslash is needed in front of a character to turn off its special meaning in a regular expres-
sion, then that backslash needs a preceding backslash to protect it in a string.

For example, suppose we wish to match strings containing an a followed by a dollar sign.
The regular expression for this pattern is a\$. If we want to create a string to represent this regu-
lar expression, we must add one more backslash: "a\\$". The regular expressions on each of the
following lines are equivalent.

Of course, if the context of a matching operator is

then the additional level of backslashes is not needed in the first field.

The precise form of regular expressions and the substrings they match is given in Table 2.
The unary operators *, +, and 3 have the highest precedence, then concatenation, and then alter-
nation I . All operators are left associative.

2.4. Combinations of Patterns

TABLE 2. Awk REGULAR EXPRESS(ONS

A compound pattern combines simpler patterns with parentheses and the logical operators i I
(or), bb (and), I (not). For example, suppose we wish to print all countries in Asia with a popu-
lation of more than 500 million. The following program does this by selecting all lines in which
the fourth field is Asia and the third field exceeds 500:

EXPRESSION

c
\c
a

4

Is1
1 "sl
r+
r+
r ?

(r)

r ~ r i
r , l r2

The program

- - pp

MATCHES

any non-metacharacter c
character c literally
beginning of string
end of string
any character but newline
any character in set s

any character not in set s
zero or more r's
one or more r's
zero or one r
r
r then r2 (concatenation)
r , or r2 (alternation)

selects lines with Asia or Africa as the fourth field. Another way to write the latter query is to use
a regular expression with the alternation operator 1 :

The negation operator ! has the highest precedence, then bb, and finally I f . The operators
bb and I evaluate their operands from left to right; evaluation stops as soon as truth or falsehood
is determined.

2.5. Pattern Ranges
A pattern range consists of two patterns separated by a comma, as in

In this case, the action is performed for each line between' an occurrence of pat, and the next

occurrence of par2 (inclusive). As an example, the pattern

matches lines starting with the first line that contains Canada up through the next occurrence of
Brazil: a -

Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America

Similarly, since FNR is the number of the current record in the current input file, the program

== 1, FNR == 5 I print FILENAME, $0 b (P.369

prints the first five records of each input file with the name of the current input f i b prepended.

In a pattern-action statement, the pattern selects input records; the action determines what is
to be done with them. Actions frequently are simple print or assignment statements, but may be
an arbitrary sequence of statements separated by newlines or semicolons. This section describes
the statements that can make up actions.

3.1. BUM-~II VaairrbIe~
Table 3 lists the built-in variables that awk maintains. Some of these we Rave already met;

others will be used in this and later sections.

ARW

ARGV

FILENAME
HNR
FS
NB
HR
QFEIT
OPS
O M
RS

TABLE 3. BUILT-IN VARIABLES

MEANING

number of command-line arguments
array of command-line arguments
name of current input file
record number in current f ib
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator

blank&tab

%.6g
blank

newline
newline

Arithmetic

Actions use conventional arithmetic expressions to compute numeric values. As a simple
example, suppose we want to print the population density for each country. Since the second field
is the area in thousands of square miles and the third field is the population in millions, the expres-
sion 1000 + $3 / $2 gives the population density in people per square mile. The program

{ printf "%lOs X6.4f\nn, $1. 1000 * $3 / $2 1 (P.37)

applied to countries prints the name of the country and its population density:

USSR
Canada
China
USA

Brazil
Australia

India
Argentina

Sudan
Algeria

Arithmetic is done internally in floating point. The arithmetic operators are +, -, *, /, %
(remainder) and A (exponentiation; *+ is a synonym). Arithmetic expressions can be created by
applying these operators to constants, variables, field names, array elements, functions, and other
expressions; all of which are discussed later. Note that awk recognizes and produces scientific
(exponential) notation: le6, 1E6, 10e5, and 1000000 are numerically equal.

Awk has C-like assignment statements. The simplest form is the assignment statement

where v is a variable or field name, and e is an expression. For example, to compute the total
population and number of Asian countries, we could write

$4 =- " h i a n { pop = pop + $3; n = n + 1 1 (P.38)
END { print "population of", n,\

"Asian countries in millions is", pop 1

(A long m k statement can also be split across several lines by continuing each line with a \, as in
the END action of (P.38)). Applied to countries, (P.38) produces

population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two assignment statements, one to
accumulate population, and the other to count countries. The variables were not explicitly initial-

'

ized, yet everything worked properly because awk initializes each variable with the string value " "
and the numeric value 0.

The assignments in the previous program can be written more concisely using the operators
+= and ++:

$4 == "Asian { pop += $3; ++n 1

The operator += is borrowed from the programming language C. it has the same effect as the
longer version - the variable on the left is incremented by the value of the expression on the right
- but += is shorter and runs faster. The same is true of the ++ operator, which adds 1 to a vari-
able.

The abbreviated assignment operators are +=, -=, *a, /=, %=, and ^=. Their meanings are
similar: v op= e has the same effect as v = v op e. The increment operators are ++ and --. As in
C, they may be used as prefix operators (++x) or postfix (x++). If x is 1, then i=++x increments
x, then sets i to 2, while i=x++ sets i to 1, then increments x. An analogous interpretation
applies to prefix and postfix --.

Assignment and increment and decrement operators may all be used in arithmetic expres-
sions.

We use default initialization to advantage in the following program, which finds the country
with the largest population:

maxpop < $3 { maxpop = $3; country = $1)

END { print country, maxpop 1 (P.39)

Note, however, that this program would not be correct if all values of $3 were negative.

Awk provides the built-in arithmetic functions shown in Table 4.

TABLE 4. BUILT-IN ARITHMETIC FUNCTIONS

arctangent of y /x in the range - w to rr
cosine of x , with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and I
sine of x , with x in radians
square root of x
x is new seed for rand()

x and y are arbitrary expressions. The function rand(1 returns a pseudo-random floating point
number in the range (0,1), and srand(x1 can be used to set the seed of the generator. If
srand(1 has no argument, the seed is derived from the time of day.

3.3, SWngs and String Functions
A string constant is created by enclosing a sequence of characters inside quotation marks, as

in "abc" or "hello, everyonen. String constants may contain the C escape sequences for spe-
cial characters listed in 82.3.

String expressions are created by concatenating constants, variables, field names, array ele-
ments, functions, and other expressions. The program

{ print NR ':" $0) (P.40)

prints each record preceded by its record number and a colon, with no blanks. The three strings
representing the record number, the colon, and the record are concatenated and the resulting string
is printed. The concatenation owrator has no explicit representation other than juxtaposition.

Awk provides the built-in string functions shown in Table 5. In this table, F represents a reg-
ular expression (either as a string or as / r /) , s and t string expressions, and n and p integers.

gsub(r,s)
gsub(r,s,t)
index(s,t)
length
length(s1

- split(s,a)
split(s,a,r)
sgrintf (@t, expr -list
sub(r,s)
sub(r.s,t)
substr (s ,p

substitute s for r globally in current record. return number of substitutions
substitute s for r globally in string t, return number of substitutions
return position of string t in s, 0 if not present
return length of $0
return length of s
split s into array a on FS. return number of fields
split s into array a on regular expression r. return number of fields
return expr-list formatted according to format string fmr
substitute s for first r in current record. return number of substitutions
substitute s for first r in t, return number of substitutions
return suffix of s starting at position p

substr(s,p,n) I return substring of s of length n starting at position p

e

The functions sub.and gsub are patterned after the substitute command in the text editor
ed. The function gsub (r ,s , t 1 replaces successive occurrences of substrings matched by the regu-
lar expression r with the replacement string s in the target string t. (As in ed, leftrnost longest
matches are used.) It returns the number of substitutions made. The function gsub(r,s) is a
synonym foe g s u b (r , s , $ 0) . For example, the program

{ gsub(/USA/, "United Statesn); print) (P.41)

will transcribe its input, replacing occurrences of "USA" by "United States". The sub functions
are similar, except that they only replace the first matching substring in the target string.

The function index(s, t) returns the leftmost position where the string r begins in s, or zero
if r does not occur in s. The first character in a string is at position 1. For example,

index("banana", "an")

returns 2.

The length function returns the number of characters in its argument string; thus,

{ print length($O), SO 1 (P. 42)

prints each record, preceded by its length. ($ 0 does not include the input record separator.) The
program

applied to the file countries prints the longest country name:

The function sprintf (format, expr l , expr2, ... , q r A 1 returns (without printing) a
string containing crpr,, q r 2 , ..., expr, formatted according to the printf specifications in the
string format. Section 4.3 contains a complete specification of the format conventions. Thus, the
statement

assigns to x the string produced by formatting the values of $ I and $2 as a ten-character string
and a decimal number in a field of width at least six; x may be used in any subsequent computa-
tion.

The function substr (s ,p , n) returns the substring of s that begins at position p and is at
most n characters long. If substr (s , p) is used, the substring goes to the end of s; that is, it
consists of the suffix of s beginning at position p . For example, we could abbreviate the country
names in countries to their first three characters by invoking the program

I $1 = substr(S1, 1, 3) ; print 1 (p.44)

on this file to produce

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Note that setting $1 forces awk to recompute $0 and thus the fields are separated by blanks (the
default value of OFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after another in an
expression. For example, when invoked on file countries,

{ s P s substr(Slt 1, 3) " " 1
END { print s)

prints

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up a piece at a time from an initially empty string.

3.4. Field Variables
The fields of the current record can be referred to by the field variables $1, $2, . . . , SNF.

Field variables share all of the properties of other variables - they may be used in arithmetic or
string operations, and may be assigned to. Thus one can divide the second field ~f the file
countries by 1000 to convert the area from thousands to millions of square miles:

t $2 /=I 1000; print ? (e . 4 6)

or assign a new string to a field:

BEGIN (FS OPS = "\t" 1
$4 == "North America" { $4 = "NA" 1
$4 =a "South America" { $4 = "SAn 1

(print 1

The BEGIN action in (P. 47 1 resets the input field separator FS and the output field separator
OIS to a tab. Notice that the print in the fourth line of (P. 47 1 prints the value of $0 after it
has been modified by previous assignments.

Fields can be a6cessed by expressions. For example, S (m- 1 1 is the second last field of the
current record. The parentheses are needed: the value of SNF-1 is 1 less than the value in the last
f i ld .

A field variable referring to ia nonexistent field, e.g., $ (NF+ 11 has as its initial value the
empty string. A new field can be created, however, by assigning a value to it. For example, the
following program invoked on the file countries creates a fifth field giving the population den-
sity:

0

The number of fields can vary from record eo record, but there is usually an implementation
limit of 100 fields per record.

3.5. Number or String?
Variables, fields and expressions can have both a numeric value and a string value. They

take on numeric or string values according to context. For example, in the context of an arith- -

metic expression like

pop +a $3

pop and $3 must be treated numerically, so their values will be coerced to numeric type if neces-
sary.

In a string context like

print $ 4 ":" $2

$1 and $2 must be strings to be concatenated, so they will be coerced if necessary.

In an assignment v = e or v op = e , the type of v becomes the type of e.

In an ambiguous context like

the type of the comgarison depends on whether the fields are numeric or string, and this can only
be determined when the program runs; it may well differ from record to record.

In comparisons, if both operands are numeric, the comgarison is numeric; otherwise,
operands are coerced to strings, and the comparison is made on the string values. All field

I if (maxwp < $ 3) {
maxpop = $3
count ry = $7

1
1
END { p r in t country, maxpop 1

variables are of type string; in addition, each field that contains only a number is also considered
numeric. This determination is done at run time. For example, the comparison "$1 == $2" will
succeed on any pair of the inputs

but fail on the inputs

(null) 0
(null) 0 . 0
Oa 0
leSO l.OeSO

There are two idioms for coercing an expression of one type to the other:

number "" concatenate a nu1 string to a n u d e r to coerce it to type string
sm'ng + 0 add zero to a smhg to coerce it to type numeric

Thus, to force a string comparison between two fields, say

The numeric value of a string is the value of any prefix of the string that looks numeric; thus
the value of 1 2 . 3 4 ~ is 12.34, while the value of x12 .34 is zero. The string value of an arith-
metic expression is computed by formatting the string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value "". Nonexistent fields and
fields that are explicitly null have only the string value " "; they are not numeric,

3.6. Coatrd Flow Statements
Awk provides if -else, while, and for statements, and statement grouping with braces, as

in C.
The i f statement syntax is

if (expression) statement e l s e statementz

The expression acting as the conditional has no restrictions; it can include the relational operators
<, <=, >, >=, ==, and ! =; the regular expression matching operators - and ! -; the logical opera-
tors I 1 , &&, and I ; juxtaposition for concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and non-null, state-
ment, is executed; otherwise statemnf2 is executed. The else part is optional.

A single statement can always be replaced by a statement list enclosed in braces. Thestate-
ments in the statement list are terminated by newlines or semicolons.

Rewriting the maximum population program (P .39 from 83.1 with an. if statement results
in

The while statement is exactly that of C:

w h i l e (expression) statement

The expression is evaluated; if it is non-zero and non-null the statement is executed and the expres-
sion is tested again. The cycle repeats as long as the expression is non-zero. For example, to print
all input fields one per line,

The for statement is like that of C:

for (expression ; expression ; expression) statemenf

has the same effect as

expression,
while (expression {

statement
expression

1

does the same job as the while example above. An alternate version of the for statement is
described in the next section.

The break statement causes an immediate exit from an enclosing .while or for; the
continua statement causes the next iteration to begin.

The next statement causes awk to skip immediately to the next reeord and begin matching
patterns starting from the first pattern-action statement. 0

The exit statement causes the program to behave as if the end of the input had occurred; no
more input is read, and the END action, if any, is executed. Within the END action,

e x i t expr

causes the program to return the value of expr as its exit status. If there is no e q r , the exit status
is zero.

3.7. Arrays
Awk provides one-dimensional arrays. Arrays and array elements need not be declared; like

variables, they spring into existence by being mentioned. An array subscript may be a number or
a string.

As an example of a conventional numeric subscript, the statement 0
assigns the cuerent input line to the element of the array x. In fact, it is possible in principle
(though perhaps slow) to read the entire input into an array with the awk program

{ xlNR1 $0 1
END { . . . processing . . . 1

The first action merely records each input line in the array x, indexed by line number; processing
is done in the END statement. @

Array elements may also be named by nonnumeric values, a facility that gives awk a capabil-
ity rather like the associative memory of Snobol tables. For example, the following program accu-
mulates the total population of Asia and Africa into the associative array pop. The END action
prints the total population of these two continents. .@

/Asia/ { pop["Asian1 += $3 } (P.53)
/Africa/ { pop["Africa"] += $3 1
END { print "Asian population in millions is", pop["Asian]

print "African population in millions is", pop["African] 1

On countries, (P. 53 1 generates

Asian population in millions is 1765
African population in millions is 37

In program (P .53 1, if we had used pop[Asia] instead of pop C "Asia" 1 the expression would
have used the value of the variable Asia as the subscript, and since the variable is uninitialized,
the values would have been accumulated in pop[" " I .

Suppose our task is to determine the total area in each continent of the file countries.
Any expression can be used as a subscript in an array reference. Thus

areaIS41 += $2

uses the string in the fourth field of the current input record to index the array area and in that
entry accumulates the value of the second field:

BEGIN { PS = m\t* 1
t arealS41 += $2 1

END t for (name in area)
print name, araalname] 1

Invoked on countries, (P. 54 1 produces

South America 4358
Africa 1888
Asia 13611
Australia 2968
North America 7467

(P.54) uses a form of the for statement that iterates over all defined subscripts of an
array:

for (i in array) statement

executes statement with the variable i set in turn to each value of i for which array[i] has been
defined. The loop is executed once for each defined subscript, in a random order. Chaos will
result if i is altered during the loop.

Awk does not provide multidimensional arrays so you cannot write xC i , j 1 or x[i 1 [j 1.
You can, however. create your own subscripts by concatenating row and column values with a suit-
able separator. For example,

for (d = 1.; i <= 10; i++)
for (j = 1; j <a 10; j++)

arrli "," j] = ...
creates an array whose subscripts have the form i, j, such as 1,l or 1,2. (The comma distin-
guishes a subscript like 1,12 from one like 11,2.)

You can determine whether a particular subscript i occurs in an array arr by testing the con-
dition i in urr, as in

if ("Africaw in area) ...
This condition performs the test without the side effect of creating area["Africa"], which
would happen if we used

Note that neither is a test of whether the array area contains an element with value "Africa".

It is also possible to split any string into fields in the elements of an array using the built-in
function sp l i t . The function

splits the string s 1 : s2 : 33 into three fields, using the separator : and storing s 1 in a[1 I , 92 in
a[2], and s3 in aC31. The number of fields found, here 3, is returned as the value of split.
The third argument of split is a regular expression to be used as the field separator. If the third
argument is missing, FS is used as the field separator.

An array element may be deleted with the delete statement:

de 1 et e omrynatnc [subscript]

3.8. User-Defined Functions
Awk provides userdefined functions. A function is defined as

The definition can occur anywhere a pattern-action statement can. The argument list is a list of
variable names separated by commas; within the body of the function these variables refer to the
actual parameters when the function is called. There must be no space between the function name
and the left parenthesis of the argument list when the function is called; otherwise it looks like a
concatenation. For example, to define and test the usual recursive factorial function,

Array arguments are passed by reference, as in C, so it is possible foe the function to alter array
elements or create new ones. Scalar arguments are passed by value, however, so the function can-
not affect their values outside. Within a function, formal parameters are local variables but all
other variabies are global. (You can have any number of extra formal parameters that are used
purely as local variables; because arrays are passed by reference, however, the local variables can
only be scalars.) The return statement is optional, but the returned value is undefined if execu-
tion falls off the end of the function.

3.9. Comments .

Comments may be placed in awk programs: they begin with the character + and end at the
end of the line, as in

pr int x, y # this is a comment

4. Output
The print and pri~tf statements are the two primary constructs that generate output.

The print statement is used to generate quick-anddirty output; printf is used for more care- .
fully formatted output.

4.1. Print
The statement

prints the string value of each expression separated by the output field separator followed by the
output record separator. The statement

CHARACI'ER

d
a

f

9

o
s
x
X

print

PRINT EXPRESSION AS

decimal number
[-]d.ddddddE[+-ldd
[-]ddd.dddddd

a or f conversion. whichever is shorter, with
nonsignificant zeros suppressed

unsigned octal number
string
unsigned hexadecimal number
print a X; no argument is converted

is an abbreviation for

print 10 '

TO pint an empty line use - -
print "' - - _

4.2. Output Separators --
The output field separator and record separator are held in the built-in variables OFS and

ORS. Initially, OFS is set to a single blank and ORS to a single newline, but these values can be
changed at any time. For example, the following program prints the first and second fields of each
record with a colon between the fields and two newlines after the second field:

BEGIN Q OPS = ':'; ORS = '\n\nn 1
{ print $1, $2 1

Notice that

{ print $1 $2 1 (P.57)

prints the fwst and second fields with no intervening output field separator, because $ 7 $2 is a
string consisting of the concatenation of the first two fields. .
4.3. Rintf

Awk's printf statement is the same as that in C except that the c and + format specifiers
are not supported. The printf statement has the general form

printf format, q r , , expr*, expr,

where f o m t is a string that contains both information to be printed and specifications on what
conversions are to be performed on the expressions in the argument list, as in Table 6. Each
specification begins with a 56, ends with a letter that determines the conversion, and may include

- left-justify expression in its field
width pad field to this width as needed; leading 0 pads with zeros
.prec maximum string width or digits to right of decimal point

Here are some examples of p r in t f statements along with the corresponding output:

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
print f
printf
printf
print f
printf

"%dm, 99/2
"%en, 99/2
"%fn, 99/2
"X6.2fm, 99/2
" X g " , 99/2
" X o " , 99
'X060", 99
" X r ' , 99
":%a:", "January"
'!%lOs:", "Januarym
"I%-losin, "January"
"iX.3~:". "January"
":%10.3s~", "January'
":%-10.38;". "Januaryw
"XX"

4 9
4.950000e+OS
49.500000
49.50
49.5
143
000143
6 3
! January
I January:
:January
 an:

I
I Jan :
f Jan I

X

The default output format of numbers is X. 6g; this can be changed by assigning a new value to
OPMT. OFMT also controls the conversion of numeric values to strings for concatenation and aea-
tion of array subscripts.

4.4. Qatput into Files

It is possible to print output into files instead of to the standard output. The following pro-
gram invoked on the file countries will print all lines where the population (third field) is
bigger than 100 into a file called bigpop, and all other lines into smallpop:

$3 w 100 { print $1, 13 +"bigpopw)
$ 3 *= 100 { print $1, $3 >"smallpep" 1 (P.58)

Notice that the filenames have to be quoted; without quotes, bigpop and smallipop are merely
uninitialized variables. It is important to note that the files &re opened once; each successive

@
print or printf statement adds more data to the corresponding file. If is used instead of >,
output is appended t~ the file rather than overwriting its original contents.

4.5. Output into Pipes

It is also possible to direct printing into a pipe with a command on the other end, instead of a
file. The statement

print I " c o d - h e m

causes the output of print to be piped into the command-line.

Although we have shown them here as literal strings enclosed in quotes, the compnand-line
and filenames can come from variables, etc., as well. @

Suppose we want to create a list of continent-population pairs, sorted alphabetically by con-
tinent. The awk program below accumulates in an array pop the population values in the third
field for each of the distinct continent names in the fourth field, prints each continent and its ppu-
lation, and pipes this output into the sort command.

BEGIN { PS = *\tw)
{ poplS41 +a $3 1

END { for (C in pop)
print c ":" poplc] : *sortn 1

Invoked on the file countries (P. 59 1 yields

Africa: 37
Asia : 1765
Australia:14
North America:243
South America:142

In all of these p r in t statements involving redirection of output, the files or pipes are identi-
fied by their names (that is, the pipe above is literally named sort) , but they are created and
opened only once in the entire run.

There is a limit of the number of files that can be open simultaneously. The statement
close(file) closes a file or pipe; file is the string used to create it in the first place, as in
close("sort" 1.

5. Input
There are several ways of providing the input data to an auk program P. The most common

arrangement is to put the data into a file, say awkdata, and then execute

awk 'P' awkdata

Awk reads its standard input if no filenames are given; thus, a second common arrangement is to
have another program pipe its output into avk. For example, the program egrep selects input lines
containing a specified regular expression, but it can do so faster than awk since this is the only
thing it does. We could therefore invoke the pipe

egrap 'Asiae countria. : awk '..."
Egrep will quickly find the lines containing A s i a and pass them on to the awk program for subse-
quent processing.

5.1. Input separators
With the default setting of the field separator FS, input fields are separated by blanks or

tabs, and leading blanks are discarded, so each of these lines has the same first field:

f ieldl f ield2
f ieldl

f ieldl

When the field separator is a tab, however, leading blanks are nor discarded.

The field separator can be set to any regular expression by assigning a value to the built-in
variable FS. For example,

awk 'BEGIN { PS = " (, [\ \ t]*)f([\\t]+)") ...'
sets it to an optional comma followed by any number of blanks and tabs. FS can also be set on the
command line with the -F argument:

awk -P'(,[\t]*):([\t]+)' '...'
behaves the same as the previous example. Regular expressions used as field separators will not
match null strings.

5.2. Multi-Line Records
Records.are normally separated by newlines, so that each line is a record, but this too can be

changed, though in a quite limited way. If the built-in record-separator variable RS is set to the
empty string, as in

BEGIN { RS = " ")

then input records can be several lines long; a sequence of empty lines separates records. A com-
mon way to process multiple-line records is to use

to set the record separator to an empty line and the field separator to a newline. There is a limit,
however, on how long a record can be; it is usually about 2 5 0 characters. Sections 5.3 and 6.2
show other examples of processing multi-line records.

5.3. The getline Function
Awk's limited facility for automatically breaking its input into records that are moFe than one

line long is not adequate for some tasks. For example, if records are not separated by blank lines
but by something more complicated, merely setting RS to null doesn't work. In such cases, it is
necessary to manage the splitting of each record into fields in the program. Here are some sugges-
t ions.

The function getline can be used to read input either from the current input or from a file
or pipe, by redirection analogous to printf. By itself, getline fetches the next input record J&

and performs the normal field-splitting operations on it. It sets NF, NR, and FNR. getline
Q

returns 4 if there was a record present, 0 if the end-of-file was encountered, and -1 if some error
occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records, each of which
begins with a line beginning with START and ends with a line beginning with STOP. The following
ewk program processes these multi-line records, a line at a time, putting the lines of the record
into consecutive entries of an array

Once the line containing STOP is encountered, the record can be processed from the data in the f
away:

/^START/ {
fCnf=?] = SO
while (getline M SO 9 - /*STOP/)

fC++nfl = SO
now process the data in fll%...f[nf]

Notice that this code uses the fact that bb, evaluates its operands Ieft to right and stops as won as
one is true.

The same job can also be done by the following program:

/^START/ && ni-0 (f[nf=ll = SO 1
nf . 1 { f[++nfl = SO 1
/^STOP/ 4 # now process the data in f[l]...f[nf]

s..

nb = 0
1

The statement getline x reads the next record into the variable x. No splitting is done: NF
is not set. The statement

getline <"filem

reads from file instead of the current input. It has no effect on NR or FNR, but field splitting is
pexformed and NF is set. The statement

gets the next record from file into x; no splitting is done, and NF, NR and FNR are untouched.

It is also possible to pipe the output of another command directly into getline. FOP exam-
ple, the statement

while ("who" : g e t l i n e)
n++

executes who and pipes its output into getline. Each iteration of the while loop reads one
more line and increments the variable n, so after the while loop terminates, n contains a count of
the number of users. Similarly, the statement

pipes the output of date into the variable d, thus setting d to the current date.

Table 7 summarizes the getline function.

5.4. Commsad-line Arguments

getline
getline wr
getline cfilc
getline var c .

cmd I getline
cmd : getline var

The command-line arguments are available to an awk program: the array ARGV contains the
elements ARGVI 0 1, ARGV[ARGC- 1 I ; as in C, ARGC is the count. ARGV[0 I is the name of the
program (generally awk); the remaining arguments are whatever was provided (excluding the pro-
gram and any optiond arguments). The following command contains an awk program that echoes

SO, NF. NR. FNR
var. NR, FNR
SO, NF
wr
SO, NP
var

the arguments that appear

awk . '
BEGIN 1

for (i

printf
exit

1' $4

after the program name:

= 1; i c ARGC; i++)
printf "Xe ", ARGV[i] ." \nn

The arguments may be modified or added to; ARGC may be altered. As each input file ends, awk
treats the next non-null element of ARGV (up to the current value of ARGC-1) as the name of the
next input file.

There is one exception to the rule that an argument is a filename: if it is of the form

then the variable v w is set to the value value as if by assignment. Such an argument is not treated
as a filename. If value is a string, no quotes are needed.

6. Cooperation with the Rest of the Wodd
Awk gains its greatest power when it is used in conjunction with other programs. Here we

describe some of the ways in which awk programs cooperate with other commands.

6.1. The system Function
The built-in function system(command-line) executes the command command-line, which

may well be a string computed by, for example, the built-in function sprintf. The value
returned by system is the status return of the command executed.

For example, the program

calls the command cat to print the file named in the second field of every input record whose first
field is #include, after stripping any <, > or " that might be present.

6.2. Cooperation witb the Shell

in all the examples thus far, the awk program was in a file and fetched from there using the
-f flag, or it appeared on the command line enclosed in single quotes. as in

awk " { print $1 1' ...
Snce awk uses many of the same characters as the shell does, such as $ and ", surrounding the
awk program with single quotes ensures that the shell will pass the entire program unchanged to
the awk interpreter. & I*

$t,,s":

Now, consider writing a command addr that will search a file addresslfst for name,
address and telephone information. Suppose that addresslist contains names and addresses in

8
which a typical entry is a multi-line record such as

G. R. Emlirr
600 Mountain Avenue
Murray Hill, N J 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like

That is easily done by a program of the form

awk '
BEGIN { WS = '" ?
/Ealin/
" addzesslist

The problem is how to get a different search pattern into the program each time it is run.

There are several ways to d~ this. One way is to create a file called addr that contains

awk *
BEGIN { R S = ' ")
/'$lf/
' addresslist

The quotes are critical here: the awk program is only one argument, even though there are two sets
of quotes, because quotes do not nest. The 5 9 is outside the quotes, visible to the shell, which
therefore replaces it by the pattern Emlin when the command addr Emlin is invoked.?

4B
A desnd way to implement addr relies on the fact that the shell substitutes for $ parameters

within double quotes:

awk '
BEGIN { RS = \"\" 1
/I I/
" addresslist

Here we must protect the quotes defining RS with backslashes so that the shell passes them on to
awk. uninterpreted by the shell. $1 is recognized as a parameter, however, so the sheil replaces it
by the pattern when the command addr pattern is invoked.

A third way to implement addr is to use M G V to pass the regular expression to an awk

t On a Unix system, adds can be made executable by changing its mode with the command: ehuiod +x ad&.

program that explicitly reads through the address list with getline:

awk '
BEGIN { RS = ""

while (getline < waddresslist")
if ($ 0 - ARGVIl])

print $0
exit

1 '

All processing is done in the BEGIN action.

Not ia that any regular expression can be passed to addr; in particular, it is possible to
retrieve by parts of an address or telephone number as well as by name.

Awk is especially useful for producing reports that summarize and format information. Sup-
pose we wish to produce a report from the file countries in which we list the continents alpha-
betically, and after each continent its countries in decreasing order of population:

Africa :
Sudan 19
Algeria 18

Asia :
China 866
India 637
USSR 262

Australia :
Australia 14

North America:
USA 2 19
Canada 74

South America:
Brazil 116
Argentina 26

As with many data processing tasks, it is much easier to produce this report in several stages.
First, we create a list of continentcountry-population triples, in which each field is separated by a
colon. This can be done with the following program triples, which uses an array'pop indexed
by subscripts of the form "continent:country" to store the population of a given country. The print
statement in the END section creates the list of continent-country-population triples that are piped
to the system sort routine.

BEGIN { FS = "\t")

{ popll4 ":* $11 += $3 1
END { for (CC in pop) (P.61)

print cc ":" pop[ccl : "sort -t: +O -1 +2nrw)

The arguments for the sort command deserve special mention. The -t: argument tells sort to
use : as its field separator. The +O -1 arguments make the first field the primary sort key. In
general, + i - j makes fields i + I , i +2, ..., j the sort key. If - j is omitted, the fields from i + 1
to the end of the record are used. The +2nr argument makes the third fie& numerically decreas-
ing, the secondary sort key (n is for numeric, r for reverse order). The Unix Programmer's
Manual contains a complete description of the sort command. Invoked on the file countries,
(P - 6 7 1 produces as output

Africa:Sudan:19
Africa:Algeria:18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia:14
North America:USA:219
North America:Canada:24
South America:Brazil:ll6
South America:Argeatina:26

This output is in the right order but the wrong format. To transform the output into the
desired form we run it through a second awk program format:

BEGIN { PS = ' : ' 1
if ($1 I = prev)

print '\am $1 ":'
prep a $1 (P.62)

1
printf '\tX-18s X6d\am, $2, $3

1

This is a '"control-break" program that prints only the first occurrence of a continent name and
formats the country-population lines associated with that continent in the desired manner. The
command

awk -f triples countriee : awk -f format
gives us our desired report. As this example suggests, complex data transformation and formatting
tasks can often be reduced to a few simple awk's and son's.

As an exercise, add to the population report subtotals for each continent and a grand total.

8. Addbeonam Examples
Awk has been used in surprising ways. We have seen awk programs that implement database

systems and a variety of compilers and assemblers, in addition to the more traditional tasks of
information retrieval, data manipulation, and report generation. Invariably, the awk programs are
significantly shorter than equivalent programs written in more conventional programming
languages such as Pascal or C. In this section, we will present a few more examples to illustrate
some additional awk programs.

1. Wordjiequencies. Our first example illustrates associative arrays for counting. Suppose
we want to count the number of times each word appears in the input, where a word is any con-
tiguous sequence of non-blank, non-tab characters. The following program prints the word fre-
quencies, sorted in decreasing order.

I for (W = 1; w <= NF; w++) co~mt[$w]++) (P.63)
END { for (w in count) print count[w], w : 'sort -nrw)

The first statement uses the array count to accumulate the number of times each word is used.
Once the input has been read, the second for loop pipes the final count along with each word into
the sort command.

2. Accurnuletion. Suppose we have two files, deposits and withdrawals, of records
containing a name field and an amount field. For each name we want to print the net balance
determined by subtracting the total withdrawals from the total depasits for each name. The net
balance can be computed by the following program:

awk '
FILENAME == "deposits" { balancelSll += $2)
FILENAME == "withdrawals" { balancelSl1 -= $2)

END { for (name in balance)
print name, balance[name]

) ' deposits withdrawals

The first statement uses the array balance to accumulate the total amount for each name in the
file deposits. The second statement subtracts associated withdrawals from each total. If there
are only withdrawals associated with a name, an entry for that name will be created by the second
statement. The END action prints each name with its net balance.

3. RPndom choice. The following function prints (in order) k random elements from the first
n elements of the array A. In the program, k is the number of entries that still need to be printed,
and n is the number of elements yet to be examined. The decision of whether to print the ith ele-
ment is determined by the test rand(1 < k/n.

func choocle(A, k, n) {
for (i = 1; n > 0; i++)

if (rand0 < k/n--9 {
print AIil
k--

1
1

1

4. S M facility. The following awk program simulates (crudely) the history facility of the
Unix system shell. A line containing only = recxecutes the last command executed. A line begin-
ning with - cmd reexecutes the iast command whose invocation included the string cmd. Other-
wise, the current line is executed.

$1 { if [MP == 1)
system(x[NRl = x[NR-11)

else
for (i = NR-1; i + 0; i--1

if (xCi1 - $2)
system(x[NRl = x[iJ)
break

1
next 1

5 . Form-letter generation. The following program generates form letters, using a template
stored in a file called form. letter:

This is a form letter.
The first field is $1, the second $2, the third 13.
The third is $3, second is $2, and first is $1.

and replacement text of this form:

field 1:field 2:field 3
oneItwoIthree
a:b:c

The BEGIN action stores the template in the array template; the remaining action cycles through
the input data, using gaub to replace template fields of the form Sn with the corresponding data
fields.

BEGIN { FS = " i n
while (getline c"form.letterw)

line[++nl = $0
1

for (i = 1; i <= n; i++) {
s = lineli]
for (j a 1; j <= NF; j++)

gaub("\ \bRj , $ 3 , 8)
print s

1
1

6. Random sentences. Our final problem is to generate random sentences, given a grammar.
Given input like @

S - + N P n
m->ALN
NP -* N
N -* John
N -* Mary
AL -* A
AL -> A &
A -a Wee
A - w Little
VB -> V AvL
v - w
V - w walks
AvL -> AV
AVL -* ML AIP
Av -+ quickly
AV -* ~10wly
ML -* M
M I - + M L M
M -* very
gsla S

it will generate sentences Iike

John runs pickly
Wee Little Mary rams quickly
Mary runs very very slowly

The following program presents a fairly naive approach: each left-hand side is remembered in an
associative array, along with the components of its right-hand side. When a gen command occurs,
a random instance of that left-hand side is expanded recursively.

@
I if ($1 *= 'genw) {

gala($2 1
print "

1 ~ P s @ if ($2 == " ->") {

i = ++lhsct[$11
rhsct[bl "," i] = NP-2
for (j = 3 ; j a= NF; j++)

rhslist[$l "," i "," j-21 = $j
1 else

print RUnrecognized command: " $0

f m c gen(sym, i, j) { X i and j are local variables
if (sym in lhsct) I

i = int(lhsct[sym] + rand()) + 1
for (j = 1; j <= rhsct[sym " ,* i]; j++)

gen(rhs1istlsym "," i "," jl)
1 else

printf "Xs ", sym
}

Notice the use of extra arguments in the list of parameters for gen; they serve as local variables
for that specific instance of the function.

In all such examples, a prudent strategy is to start with a small version and expand it, trying
out each aspect before moving on to the next.

Further R e d n g
A technical discussion of the design of awk may be found in Awk - a pattern scanning and

processing language, by A. V. Aho, B. W. Kernighan and P. J. Weinberger, which appeared in
Software Practice and Experience, April 1979.

Much of the syntax of awk is derived from C, described in The C Programming Lunguage, by
B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).

The function printf is described in the C book, and also in Section 2 of The Unir
Programmer's Manual. The programs ed, sed, egrep, and l a are also described there, with an
explanation of regular expressions.

The Unix Programming Environment, by B. W. Kernighan and R . Pike (Prentice-Hall, 1984)
contains a large number of awk examples, including illustrations of cooperation with sed and the
shell. Jon Bentley's ProgrammingPearls columns in the June and July 1985 issues of CACM eon-
tain a wide variety of other awk examples.

Acknowledgements
We are indebted to Jon Bentley, Lorinda Cherry, Marion Harris, Teresa Alice Hommel, Rob

Pike, Chris Van Wyk, and V ~ C Vyssotsky for valuable comments on drafts of this manual.

Appendix A: Awk Summary

Commaad-line
awk "program' filenames
awk -f program-file filenames
awk -Ps set field separator to string s; - P t sets separator to tab

Pattern
BEGIN
END
/reg&r expression/
relational expressiors
pattern 6& pattern
pattern l l pattern
(pattern 1
! pattern

pattern, poncrn
f unc name (parameter list 1 (statement 1

coabd-flow ststonnnts

if (u p r) smement [else statement]
if (subscript in army) statement [else statement]
while (cxpr) statemeno
for (u p r ; up+; u p r) smtement
for (VBP in array) statement
break
continue
next
e x i t [upr]
function-name (expr , expr ,
return [crpr]

close (filename 1
getline
getline *file
getline var
getline var efilc
print
print expr-list
print expr-list >/ilr
print f fmp, expr-list
printf fmr, expr-list >file
system(cmd-line)

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record'offile; set NF
set var from next input record; set NR, FNR
set var from next record of file
print current record
print expressions
print expressions on file
format and print
format and print on file
execute command cd-line, return status

In print and printf above, >>file appends to the file. and I command writes on a pipe. Similarly, corn-
mand I getline pipes into getline. getline returns 0 on end of file, and - I on error.

String funetioas

gsub(r,s,t) substitute string s for each substring matching regular expression r
in string t, return number of substitutions; if t omitted, use $0

index(s,t) return index of string t in string s, or 0 if not present
length(s1 return length of string s
split(s,a,r) split string s into array a on regular expression r, return number of fields

if r omitted, FS is used in its place
sprintf (fmt. expr-list) print expr-list according to fmt, return resulting string
sub(r,s,t) like gsub except only the fvst matching substring is r e p l a d .
subatr(s,i,n) return n-char substring of s starting at i; if n omitted, use rest of s

arctangent of y /x in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and I
sine (angle in radians)
square root
new seed for random number generator; use time of day if no expr

' Q assignment
logical OR
logical AND
regular expression match, negated match
relationals
string concatenation
add, subtract
multiply, divide. mod
unary plus, unary minus, logical negation
exponentiation (*+ is a synonym)
inaement, decrement (prefix and M I X)
field

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc ...
negated class matches any but abc.. . and newline
matches either r l or r2
concatenation: matches rl, then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

Built-in variables

ARGC
ARGV
FILENAME
FNR
FS
NP
NR
o m
OPS
ORS
Rs

number of command-line arguments
array of command-line arguments (0. . A R K - I)
name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default X . 69)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)

Limits
Any particular implementation of awk enforces same limits. Here are typical values:

100 fields
2500 characters per input record
2500 charaaers per output record
1024 characters per individual f ~ l d
1024 characters per piiatf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the 1-1 machine, e.g., le-38.

Initializptioa, compuison, and type cwedon
Each variable and field can potentially be a string or a number or both at any time. When a variable is

set by the assignment
VILL" - expr

its type is set to that of the expression. ('"Assignment" includes +I., -I., etc.) An arithmetic expression is of
type number, a concatenation is of type string, and so on. If the assignment is a simple copy, as in

v1 a v2

then the type of v l becomes that of v2.
In comparisons, if both operands are numeric, the wmparison b made numerically. Otherwise,

operands are coerced to string if necessary. and the comparison is made on strings. The type of any expres-
sion can be coerced to numeric by subterfuges sush as

expr + 0

and as string by
expr * -

(i.e., concatenation with a null string).
Uninitialized variables have the numeric value 0 and the string value "". Accordingly, if x is uninitial-

ized,
if (x) .-.

is false, and
if (I x) e e s

if (x =- 0) . * a

if (x == = - I ...
are all true. But note that

if (X == " 0 .)
is false.

The type of a field is determined by context when possible; for example,
ST++

clearly implies that 5 9 is to be numeric. and

$1 = $ 1 "," $2

implies that $1 and $2 are both to be strings. Coercion will be done as needed.
In contexts where types cannot be reliably determined, e.g.,

if (S l == $2) ...
the type of each field is determined on input. All fields are strings; in addition, each field that contains only a
number is also considered numeric.

Fields that are explicitly null have the string value " "; they are not numeric. Nonexistent fields (i.e.,
fields past NF) are treated this way too.

As it is for fields, so it is for array elements created by s p l i t ().

Mentioning a variable in an expression causes it to exist, with the value " * as described above. Thus, if
arr [i 3 does not currently exist.

if (arrtil == " =) ...
causes it to exist with the value "" and thus the i f is satisfied. The special construction

if (i ia a m) ...
determines if arr[i] exists without the side effect of creating it if it does not.

Appendix B: A Summary of New Features
This appendix summarizes the new features that have been added to awk for the dune, 1985 release.
Regular expressions may be created dynamically and stored in variables. The fieid separator FS may be

a regular expression. as may the third argument of s p l i t (1.
Functions have been added. The declaration is

func Mrnc(arglis8) t body 1

Scalar arguments are passed by value, arrays by reference. Within the body, parameters are locals; all other
variables are global.

r e t w eqw

returns a value to the caller; a plain return returns without a value, as does falling off the end.
getline for multiple input sources:

getline

sets SO, NR, FNR. NF from the next input record.
getline x

sets x from next input record, sets NR and FNR. but nor $ 0 and NF.
getline <"filem

sets SO from file, sets NF, but not NR or FNR.
getline x *'fileP

sets x from file; it has no effect on $0. NR, NF, etc.
' c m w (getline

is like getline *"filen, and
"cnrunaW : getline x

is l i e getline x *"filew.
Command-line arguments are accessible. in ARGVC 0 I ... ARGVIARGC- 11. These may be altered or

augmented at will; the remaining non-null arguments are used as the normal filenames.
New built-in functions include

The exponentiation operator * and the corresponding assignment operator ^n have been added.
The condition

i in array

tests whether array has a subscript of value i without creating it.
The delete statement deletes an array element.
The variable FNR is the record number in the current input file; the test m==1 succeeds at the first

record of each new file.
C string escapes like \f, \b. \r, and \123 work as in C.
BEGIN, END and func declarations may be intermixed with other patterns in any order.
Source lines are now continued after commas, : I and &&; other contexts still require an explicit \.

Limited Warranty
There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor any

other warranty, either express or implied. as to the accuracy of the enclosed materials or as to their suitability
for any particular purpose. Accordingly, the Awk Development Task Force assumes no responsibility for their
rase by the recipient. Further. the Task Force assumes no obligation to furnish any assistance of any kind
whatsoever, or to furnish any additional information or documentation.

Index

I negation operator I5
&ti AND operator 9, 15. 22
X= assignment operator I I
*= assignment operator I I
+= assignment operator I I
-= assignment operator 11
/= assignment operator I I
= assignment operator 11, 14
^= &ignment operator I I
t comment 18 -- decrement operator I I
== equality operator 4. 14
^ exponentiation operator 1 1
>= greater or equal opcrator

4
> greater than operator 4
++ inaement operator I I
I = inequality operator 4
a= less or equal operator 4
a less than operator 4 - match operator 6-8, IS
I neption operator 9
I - non-match operator 6-8,

15
I I OR operator 9. 15 . output redirection 20
DD output redirection 20
I output redirection 20
S regular expression 7
(regular expression 8 . regular expression 7
[. . . I regular expression 8
[...I regular expression 8

regular expression 7
f regular exprurioa 8-9
X remainder operator I I
r*. see - 11
Sn field 2. 14
so

input l i e 2
 cord 2

action, default 2
Actions 10
addrewlist program 24
AND operator. SiS 9
ARGC variabk 10, 23
arguments

array 18
command-line 23
function 18

ARGV vpriabk 10, 23-24
Arithmetic 4, 10
arithmetic

functions. tabk of 12
operators 11

-Y
arguments 18
associative 16. 26-27
multidimensional 17
subscripts 16

Arrays 16
assignment

command-line 23
operators I I

associative m a y 16, 26-27
atan2 function 12
awk

command usage 1
program, form of I

backslash 8, 11
bailing out 5
BEGIN pattern 4, 6
break statement 16
Built-in Variables 3. 10

reference 18
value I8

character class, see regular
expression 8

characters, table of escape 8
close statement 21
coercion 14

to number IS
to string 15

Combinations of Patterns 9
command, sort 25
command-line

arguments 23
assignment 23

comments 18
comparison

numeric 6. 15
string- 6. I5

concatenation
operator 12-13
string 12-13

constant, string 12
continuation, line 6. 11, 34
continue statement 16
control flow statements 15
control-break program 26
cooperation with the shell 24
cos function 12
c u m n t input f ik 10. 23
default

aaion 2
field separator 2

delete statement 18
dynamic regular expression 8
E m h . G. R. 24
ZHD pattern 4. 6. 16
e r r o n 5
escape sequence 8, 12

tabk of 8 ,

examples, printf 20
exit statement 16
exit status 16
exp function 12
exponential notation I I
exponentiation operator, A

I I
~ x & e & n s

Regular 7
Relational 6

-F option 21
-f option 2-3. 24
factorial function 18
fwld

In 2, 14
non-existent 15
separator, default 2
separator. input 6. 21
separator, output 3
separator. regular

expression 18
Field Variables 14
F i id s 2
file. current input 10, 23
FI- variable 10
P#R vanabk 10, 22
for

... in statement 17
statement 16

form of awk program I
formal parameters 18
formatted output 13
Formatted Printing 3
form-letter program 28
FS variable 6. 10. 14. 18. 21

built-in variables, table of 10 func statement 18
call by function

arguments 18
atan2 12
con 12
erp 12
getline 22
gsub 12. 27
index 13
int 12
length 13
log 12
rand 12, 27
sin 12
split 18
sprintf 13
a q r t 12
srand 12
sub 13
substr 13
system 23

Functions. String 12
functions table of

arithmetic 12
string 12

Functions, Userdefmed I8
Generating Reports 25
getline

enw return 22
forms, tabk of 23
function 22

global variables 18
gmubfunction 12.27
history program 27
if

.. . in statement 17
else statemeat 15

index function 13
initialization IS. 17

of variabks 1 l
input 21

fieid separator 6. 21
fik, current 10, 23
l i , so 2
pipe 22

Input Separators 21
int function 12
length function 13
line continuation 6, 11, 34
local variables 18, 29
log function 12
logical operators 9

preadence of 9
metacharacters 7

precedence of 9
quoting 8
tabk of 9

multidimensional array 17
Multi-line Records 21
multi-line records 24
\n newline 3, 8
negation operator, 1 15
next statement 16
NF variable 3, 10, 14, 22
nonsxistent field 15
notation, exponential I I
NR variabk 3, LO, 22
number, coercion to I5
Number or String 14
numeric

comparison 6, I5
variabks 14

OPMT variable 10, 15, 20
OFS variable 10, 13-14, 19
one-liners 5
operator

I negation I5
M AND 9, 15, 22

X= assignment I I
+= assignment I I
+= assignment I I
-= assignment I I
/= assignment I I
= assignment 11, 14
^= assignment I I -- decrement I I
== equality 4, 14
^ exponentiation I I
D= greater or equal 4 . greater than 4
++ increment I I
I = inequality 4
<= less or equal 4
a less than 4 - match 6-8. 15
I negation 9
I - non-match 6-8. IS
I : OR 9, I5
X remainder I I
concatenation 12- 13

operators
arithmetic I I
assignment I 1
relational 4, IS
tabk of relational 6

option
-F 21
-f 2-3, 24

ORs variabk 10, 19
Output I8
output

field separator 3
formatted 13

Output into Files 20
output

into pipes 20
pipe 20. 25
record separator 3
redirection, D 20
redirection. >> 20
redirection, l 20

Output Separators 19
parameters, formal 18
pattern

BEGIN 4 . 6
EHD 4. 6, 16

Pattern Ranges 9
pattern-action statement 1, 6,

10
patterns 6

Combinations of 9
patterns, simple 4
pipe

input 22
output 20, 25

pipes. output into 20
precedence of

logical operators 9
metacharacters 9

print statement 2. I8
printf

examples 20
specifications, table of 19
statement 3. 6. 13. 19

printing 2
Printing. Formatted 3
program

address-list 24
control-break 26
form-letter 28
history 27
random choice 27
random sentence 29
structure I

word frequency 26
quotes 2, 8, 23-24
quoting metacharacters 8
rand function 12, 27
random

choice program 27
sentence program 29

record
10 2
separator. output 3

records, multi-line 24
recursion 18, 28
redirection . output 28

.+ output 20
I output 20

reference. call by 18
regular expression 4

s 7
0 8
- 7

1 &9
dynamic 8
fwld separator 18

Regular Bxpnssioos 7
regular e x p d o a s , tabk of

9
~e&ionid Expressions 6
relational operators 4, 15

tabk of 6
remainder operator, 96 L 1
return statement 18
RS variable 10.21.24
scientific notation I I
semicoloo statement separator

10
separator

default field 2
input f~kl 6, 21
output field 4
output record 4

Scparators
input 21
Output 19

shell, cooperation with the
24

simple patterns 4
s in function 12
sor t command 25
s p l i t function 18
sprintf function 13
a q r t function 12
srand function 12
statement

bra& 16
close 21
continue I6
delete 18
ex i t I6
for 16
for ... i a 17
func 18
i f ... i n 17
i f e lse 15
next 16
pattern-action 1, 6. 10
pr int 2. 18
printf 3. 6, 13. 19
return 18
while 15

statements. control flow 1%
string
. coercion to 15

comparison 6, I5
concatenation 12- 13
constant 12

String Functions 12

string
functions, table of 12
variables 14

sub function 13
subscripts, array 16
substr function 13
syntax error 5
system function 23
\t tab 6, 8
table of

arithmetic functions 12
built-in variables 10
escape sequences 8
get l ine forms 23
metacharacters 9
printf spefifications 19
regular expressions 9
relational operators 6
string functions 12

uninitialized variables 17
usage, awk command 1
Userdefioed Functions 18
value. call by 18
variabk

ARGC 10.23
ARI;IT 10. 23-24
FILLCIQIUIE 10
m 10, 22
FS 6, 10, 14, 18, 21
NF 3, 10, 14, 22
m 3, 10. 22
OnrP 10, 15, 20
OFS 10. 13-14. 19
OR9 10, 19
RS 10. 21, 24

vpripbks
field I4
global 18
initielization of I I
local 18, 29
numeric 14
string 1 4 .
tabk of built-in 10
uninitialized 17

warranty 34
while statement 15
word frequency program 26

