CHEM-A PROGRAM FOR PHOTOTYPESETTING CHEMICAL STRUCTURE DIAGRAMS

Jon L. Bentley, Lynn W. Jelinski and Brian W. Kernighan
AT\&T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

(Received 15 December 1986)

Abstract

CHEM is a language for typesetting publication-quality chemical structure diagrams. It attempts to capture the way that a chemist would describe a structural formula to a colleague over the telephone. CHEM is implemented as a PIC [Kernighan, Software-Pract. Exper. 12, 1 (1982)] preprocessor, and runs under the UNIX operating system. Its textual input makes CHEM input-device independent and does not require a graphics terminal. CHEM diagrams can be integrated with text, and can also be used to produce slides and viewgraphs. CHEM is best suited for organic chemists, natural products chemists, and polymer chemists, although it can also be used for inorganic structure diagrams. This manuscript describes the design of CHEM and provides a tutorial on its use.

INTRODUCTION

Chemists communicate their findings largely through chemical structure diagrams, with such drawings forming an integral part of manuscripts, lectures, and grant proposals. As the trend toward electronic manuscript submission increases, driven both by efficiency and by reduction or elimination of page charges,* a facility for typesetting chemical structure diagrams becomes an essential tool for the chemist. The ability to integrate high-quality chemical structure diagrams with text is also necessary for complete "desk-top publishing" packages.

We report here on the implementation of CHEM, a language for producing publication-quality chemical structure diagrams. It has provisions for variable bond lengths and angles, rings, heterocycles and stereochemistry. CHEM differs from other programs for drawing chemical structures in that it is inputdevice independent, making it portable to university and industrial environments. A CHEM input file is simply a lext file; embedded within it may be descriptions of chemical structures, expressed in a language that uses familiar terms like benzene, bond, OCH 3 and ring. CHEM is a PIC preprocessor, similar to EQN for equations and TBL for tables, that operates under the UNIX environment. When the document is processed, CHEM converts the descriptions into commands in the PIC picture-drawing language, which in turn converts them into commands for the

[^0]TROFF formatter. Because CHEM is a PIC preprocessor, the user can revert to PIC for constructing unusual molecules that are not provided for by CHEM itself. [For a survey of document preparation tools, including those of the UNIX system, see Furuta et al. (1982). For a discussion of the UNIX systerm, see Kernighan \& Pike (1984).]

This paper is divided into four parts. The design strategy is described in the first section, where CHEM's development is put into the context of an ongoing attempt to construct "little lan-guages"-specialized languages for narrowly focused domains (Aho et al., 1986; Bentley, 1986). The second section, which contains a description of the language and numerous examples, is followed by a brief discussion. The final section is an appendix that contains the AWK (Aho et al., 1988) implementation of CHEM.

All of the diagrams in this manuscript were produced directly by CHEM.

THE DESIGN OF CHEM

The development of "little languages" is a growing trend in computer science. Such languages are tailormade for a particular restricted application. On the UNIX system, particularly, examples abound, including: YACC, a parser-generator language; PIC, a language for typesetting figures and diagrams (used by CHEM); EQN, a language for typesetting mathematical expressions; and a variety of graphics languages. The task of phototypesetting chemical structure diagrams seemed especially well-suited for a "little language" because chemists normally use a specialized language when describing structure diagrams. For example, among chemists terms like benzene, ring, bond, CH_{3}, and N have universal
meanings. Our goal was to capture the natural language of chemists within the context of a new "little language." In addition to being easy to learn and use, CHEM (1) must provide publication-quality diagrams suitable for camera-ready copy for books and journals; (2) should be input-device independent, and therefore not require a graphics terminal; and (3) must have an "escape mechanism" for drawing unusual or difficult structures that are not provided for by the language itself.

There are already a number of schemes for computer representation of chemical structure diagrams (Ash et al., 1985), perhaps the best-known of which is the Wiswesser Line Notation (Wiswesser, 1982). Although Wiswesser notation is an extremely efficient way to represent complex chemical structures, there are ambiguities in retrieving the structural diagram from the Wiswesser linear representation. This and other linear representations are therefore not suitable for drawing chemical structure diagrams. More recently connection tables have been used to represent chemical structures (Chemical Abstracts Service, 1986); the Chemical Abstracts Service maintains over 6 million chemical substances in the form of computer-searchable connection tables (Ash et al., 1985). These have the advantage of representing stereochemistry of chiral centers. However, the massive amount of storage space required for such representations makes them generally infeasible for phototypesetting chemical structure diagrams. Moreover, the chemist often wants to make a particular point by drawing a structure in a particular way. For example, when referring to an electrophilic substitution reaction it may be desirable to represent the aromatic ring with conjugated double bonds, rather than with a circle as an indicator of aromatic character. For these reasons it did not seem satisfactory to build a drawing tool based on a lincar or a connection-table representation of the structure.

A number of commercial software packages for producing chemical structure diagrams are available for personal computers (Science, 1986), and the recent literature also contains descriptions of interactive computer programs for this purpose (Watt \& Kao, 1985; Kao \& Watt, 1986; Marshall, 1986). These programs have the advantage that chemists can "draw" structurcs on the CRT screen much as they have drawn them by hand in the past. Although these approaches produce respectable diagrams, they fall short of the quality necessary for camera-ready copy.

Essentially no software is available for typesetting chemical structure diagrams for microcomputers and for mainframes (Dzonova-Jerman-Blazic \& Trinajstic, 1982), although much sofware is available for three-dimensional molecular graphics, especially for biomolecules (Diamond, 1984; Rowlett, 1985; Todd et al., 1983-84). These systems produce high-quality output (usually in color) and generally require expensive terminals and graphics devices (Pensak, 1983;

Max et al., 1981; Marsili et al., 1983). Such systems are the method of choice for representing extremely large and complex macromolecules (Heller, 1986). However, they require that the x, y and z coordinates of all of the atoms be known, and are therefore not versatile enough for drawing the casual structure of a synthetic drug or natural product.

Publishing houses such as Academic Press and the American Chemical Society, and publications such as the Dictionary of Organic Compounds and the Cambridge Structural Database have developed in-house software and art departments to produce photoready chemical structure diagrams (Ash et al., 1985). Most of these systems use special "tablets" and trained operators.

At present there is no portable, generally available system for typesetting high quality chemical structure diagrams suitable for camera-ready copy. CHEM addresses this deficiency.

THE CHEM LANGUAGE

CHEM was designed for chemists having little prior computer knowledge. It is implemented as an AWK program and will run on a UNIX system that has PIC and AWK. It is helpful, but not necessary, to have a passing acquaintance with PIC in order to use CHEM. Since the commands that tell the system how to draw a chemical structure are a text file, CHEM descriptions can be created at any terminal. Once created, the file that contains a CHEM description must be converted into TROFF output. To do this, the file must be run through CHEM, PIC and TROFF. For example:

$$
\text { chem filename } \mid \text { pic } \mid \text { troff }>\text { filename.out }
$$

takes a file that contains chemical structure diagrams and puts the formatted manuscript into filename.out. Hard copy can be obtained on any device that can print TROFF output, commonly a laser printer or typesetter.

The CHEM language is rather small. It provides for rings, heterocycles, bonds, atoms and stereochemistry. Objects are normally connected together in the order that they are written down. CHEM tries to connect them at the natural places, but provides ways to specify precisely where parts of the diagram should be placed and connected in ambiguous situations. Because CHEM is a PIC preprocessor, it is possible to include PIC statements in the middle of a diagram to draw things that are not provided by CHEM itself.

Each component of the diagram is written on a single line; blank lines and comments can be used freely to make the description easy to read later on. The commands in the text file must be surrounded by .cstart and .cend, with the "." always in the first column. (This is analogous to the use of .EQ and .EN
for equations or .TS and .TE for tables.) For example:

```
.cstart
    CH3
        bond
        CH2
        bond
.cend
```

will draw the ethyl group

and

```
.cstart
    benzene
.cend
```

draws a benzene ring:

Whatever is between cstart and .cend is converted into PIC commands by CHEM; everything outside is passed through untouched.

Sometimes it is helpful to include comments among the commands that specify the structure, especially when describing complex molecules. A comment begins with a \#; any characters from there to the end of the line are ignored. For example:
.cstart
benzene pointing right
". \# a rotated benzene ring
produces the following diagram:

Bonds, directions and atoms

Bonds are specified in the following general form, where the brackets specify optional qualifiers:

BONDTYPE [DIRECTION] [length N] [from NAME] [to NAME] [ATTRIBUTE]

The options must appear in this order. BONDTYPE can be bond, double bond, or triple bond; stereochemistry is specified by front bond and back bond. The default bond length is 0.2 in ., but it can be adjusted by specifying a length in inches. [This feature is illustrated in the structure of isotactic poly(methyl methacrylate).] Possible bond attributes are dotted and dashed.

The direction of bonds in CHEM is handled in several ways. CHEM recognizes up, down, left and
right, as well as the corresponding compass points N , S, W and E. It is also possible to specify the actual angle of the desired bond direction. Zero corresponds to up or $\mathrm{N}, 90$ to right, -90 to left, and so on. For example, this input:
cstart
bond right
bond 60
bond 120
bond 60
bond 120
bond down
.cend
produces the following stick structure:

The following diagram of methyl acetate shows how bonds can be used to connect moieties. A group or moiety $\left(\mathrm{CH}_{3}\right.$ in this example) must begin with a capital letter. Numbers are automatically converted to subscripts.
.estart
CH3 \# the 3 is automatically turned into a subscript bond \# the implicit direction is right
\# implicit connection is to right side of CH 3
C
double bond 30 \# by default, from the substituent \# C
0
bond 120 from C \# must be "from C"; otherwise \# would leave from O
0
bond right
CH3
.cend

These commands could have been written more compactly by putting the substituents on the same lines as the bonds, separated by semicolons, as in:

```
cstart
    CH3
        bond; C
        double bond 30;O
        bond }120\mathrm{ from C ; O
        bond right ; CH3
.cend
```

The following example shows that dots are centered unless the combination appears to be a fractional value, as in N 2.5 H . For example:

```
cstart
                                    HCl.H2O
.cend
```

HCl.H2O
.cend
produces

$$
\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}
$$

but attempting to do the same with $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, i.e.

```
.cstart
    CaSO4.2H2O
cend
```

produces

$$
\mathrm{CaSO}_{4.2} \mathrm{H}_{2} \mathrm{O}
$$

Special cases like this require the "right of" construct (see below). Normally a group is placed immediately after the last item mentioned, but it may be manually positioned by PIC-like commands, e.g.

CH3 at $\mathrm{C}+(0.5,0.25)$

$$
\text { \# up } 1 / 2 \text { in., right } 1 / 4 \text { in. }
$$

Names

In the methyl acetate example, the carbon atom C was used both to draw something and as a name for a place. An atom or a group always defines a name for a place. When the group or moiety contains special characters, like the parentheses in $\mathrm{N}(\mathrm{C} 2 \mathrm{H} 5) 2$, the name is what is left after the special characters are stripped out. In this example, the name would be NC 2 H 52 . Each new occurrence of a name overrides the definition of the previous one:

.cstart

bond ; C \# 1st definition of C
bond up from C
bond down from C
bond right from C; C 2nd definition of C
bond up from C
bond down from \mathbf{C}
bond right from C ; C \# 3rd definition of C bond up from C
bond down from C
bond right from C
.cend

BP is a special name that is used to specify a "branch point," a place where no moiety is printed. For example.

```
.cstart
# this is the isopropyl group
    bond 120;BP
# BP is right end of this bond
    bond - }120\mathrm{ from BP
    bond right from BP ; C
    front bond up ; CH3
    back bond down from C;D
    bond right from C ; BP
```

\# redefine BP to mean the center carbon of this \# t-butyl group bond up from BP bond right from BP bond down from BP
cend

Note that CHEM connects bonds to the proper parts of moieties by connecting to carbon atoms where possible. If necessary it is possible to override the automatic connections to carbon (see below).

This structure of several repeat units of isotactic poly(methyl methacrylate) shows the use of bonds, directions, groups and names.

> cstart
bond dotted
\# begin first segment of polymer
bond right ; BP
bond up from BP ; C
double bond -60 from $C ; O$
bond 60 length .1 from C ; OCH 3
bond down from BP ; CH 3
\# begin second segment of polymer
bond right length .5 from BP ; BP
bond up length . 1 from BP ; H
bond down length . 1 from BP ; H
\# begin third segment of polymer
bond right length . 5 from BP ; BP
bond up from BP ; C
double bond -60 from C; O
bond 60 length .1 from C ; OCH 3
bond down from BP ; CH 3
\# begin fourth segment of polymer
bond right length .5 from BP ; BP
bond up length . 1 from BP ; H
bond down length . 1 from BP ; H
\# begin fifth segment of polymer
bond right length . 5 from BP ; BP
bond up from BP ; C
double bond -60 from C; O
bond 60 length .1 from C ; OCH 3
bond down from BP ; CH3
bond right from BP
bond dotted
.cend

Rings

Rings are specified in the following general form:
[RING NAME:] ring [N] [DIRECTION]
[HETEROATOMS] [DOUBLEBOND PATTERN] where the optional parts are enclosed in square brackets. Cyclopropane through cyclooctane can be obtained by ring 3 , ring 4 , and so on:
.start
R3: ring 3
R4: ring 4 at $\mathrm{R} 3+(.75,0)$
R5: ring 5 at $R 4+(.75,0)$
R6: ring at $\mathrm{R} 5+(.75,0)$
B : benzene at $\mathrm{R} 6+(.75,0)$
R7: ring at $\mathrm{B}+(.75,0)$
R8: ring 8 at $\mathrm{R} 7+(.75,0)$.send

ring 5 pointing right

There are two types of 5 -membered rings: the pentagonal ring 5 above, and the "flatting." The flatring is useful for fusing onto the sides of other rings.

flatting pointing up flatting pointing down
It is often necessary to name the rings so that the

"ring" is a synonym for ring. The attribute "at NAME $+(.75,0)^{\prime \prime}$ is a PIC command that puts each object $3 / 4$ in. to the right of the center of the previous one.

Note that all of these rings are pointing up. That is, the top-most vertex, or vertex 1 , points toward the top of the page. This is especially obvious for cyclobutane (ring 4), which is oriented in a manner that at first appears strange to a chemist. The normal orientation has the "point" or vertex 1 rotated 45°, so it is written as
ring 4 pointing 45

The vertices of rings are always numbered the same way: the "point" is the first vertex, which is called .V1, and .V2, .V3, etc., continue clockwise around the ring. For example, the following structures show that the "point" in cyclopentane, as in any other ring, is always numbered 1, but its position follows the direction in which the ring points:

rings (or rings pointing up)

rings pointing left

ring 5 pointing down
substituents can be properly added. For example: .start R: ring 3 back bone 120 from R.V2; C2H5 front bond $\mathbf{- 1 2 0}$ from R.V3; HO .cent

The ring itself is named R; its second vertex is named R.V2. As another example, . cstart

R : benzene pointing right bond left from R,V4 ; HO bond - 150 from R.V3; CH3O bond right from R.V1; C double bond up from C ; O bond right from $\mathbf{C} ; \mathbf{N}$ bond 45 ; C 2 H 5 bond 135 from N ; C 2 H 5
.cent

Double bonds within rings are specified by naming vertices between which they appear:
.cstart
ring double $1,2,3,4,5,6$
.cend

.cstart
ring8 triple 3,4
.cend

A circle can be placed inside any ring by using the modifier aromatic:
.cstart
R: aromatic ring7
"+" at R
.cend

Fused ring structures are formed by specifying a common vertex on each ring. For example, consider cholestanol:
.cstart
R1: ring
"R1" at R1 \# this puts a label at RI
front bond $\mathbf{- 1 2 0}$ from R1.V5; HO \# the following line says "fuse the 6th \# vertex
\# of ring $R 2$ to the second vertex of R1"
R2: ring with .V6 at R1.V2
front bond up from R2.V6; CH 3
back bond down from R2.V4; H
back bond down from R2.V1; H
front bond up from R2.V2; H
R3: ring with .V4 at R2.V2
R4: flatring with .V5 at R3.V2
front bond up from R4.Vs ; CH3
back bund down from R4.V4; H
\# this is the alkyl chain
bond up from R4.V1; BP
bond -60 from BP
bond 60 from $B P$
bond 120
bond 60
bond 120; BP
bond down from BP bond 60 from BP
.cend

The next example shows how the different sized rings fuse together. Note that the fusion of the fiveand six-membered rings requires an unusual angle:
.cstart
R3: ring3
R4: ring4 pointing 45 with .V1 at R3.V2
R5: ring5 pointing down with .V4 at R4.V2
R6: ring6 pointing 54 with .V6 at R5.V5
\# the following lines specify the labels inside \# the rings
" 3 " at R3
"4" at R4
" 5 " at R5
"6" at R6
.cend

Spiro ring junctions are formed in an analogous way: .cstart

R1: ring6
R2: ring6 with .V1 at R1.V4
R3: ring5 with .V5 at R2.V3
back bond 60 from R3.V2; OH
front bond 150 from R3.V3; OH
.cend

Heteroatoms in rings are written as "put X at V ", where X is the heteroatom and V is the vertex
number. For example:
.estart
ring put N at 2 put S at 4 double $2,34,56,1$.cend

As a more complex example, this polycyclic aromatic compound is produced with the following input (note that this diagram starts with the bromo-substituted ring, but that there are many other equally good ways to start this structure):
.cstart
R1: benzene pointing right bond 30 from R1.V6; Br
R2: benzene pointing right with .V5 at R1.V1
R3: benzene pointing right with .V1 at R2.V3 bond 150 from R3.V2; CO2H
R4: benzene pointing right with .V1 at R1.V3
\# next line names bond B1 so we can refer to its \# end
B1: bond left from R4.V4
ring6 put N at 4 double $2,34,56,1$ with .V3 at B1.end
R5: benzene with .V5 at B2.end ring6 put N at 4 double $1,23,4$ with.$V 5$ at R5.V3
cend

Substituents are placed on heteroatoms just as they are placed on non-heterocycles. The nicotine molecule provides an example of bond positioning:
.cstart
benzene put N at 4
bond right
ring 5 pointing down put N at 1
bond down from N ; $\mathrm{CH} 3 \quad$ \# or .V1
.cend

The second bond refers to $\cdot \mathrm{N}$, which is an alternative name for . V1; . N refers to the immediately preceding object, the unnamed rings.

Positioning substituents

When drawing heterocyclic rings, it is often useful to position a group or atom in the vicinity of the heteroatom. This is done with the commands above, below, right of, and left of, as in the NH of the imidazole ring of histidine:
.cstart
R1: flatring pointing down put N at 2 put N at 5 double 1,2 3,4
H right of Rl.V5
bond right from R1.V4; C.H2
bond right ; \mathbf{C}
bond up from $\mathbf{C} ; \mathbf{H}$
bond down from C ; NH_{2}
bond right from $\mathrm{C} ; \mathrm{CO} 2 \mathrm{H}$
.cend

The lysergic acid diethylamide structure below provides another example of positioning substituents on heteroatoms:

.cstart
B: benzene pointing right
F : flatring pointing left put N at 5 double 3,4 with
.V1 at B.V2
H below F.N
R: ring pointing right with .V4 at B.V6
front bond right from R.V6; H
W : ring pointing right with .V2 at R.V6 put N at 1 double 3,4
bond right from W.N ; CH3
back bond -60 from W.V5 ; H
bond up from W.V5 ; C
double bond up from C; O
bond right from $\mathrm{C} ; \mathrm{N}$
bond 45 from N ; C 2 H 5
bond 135 from N ; C 2 H 5
cend
We mentioned before that CHEM attempts to connect bonds to the proper parts of moieties, connecting
carbon atoms when possible. Once in a while this may provide an unwanted effect, as shown in the attempted (left) diagram of anisole. The CH_{3} can be manually positioned by using right of, as shown in the diagram on the right.

.cstart

R1: benzene
bond down from RI.V4; OCH3
R 2 : benzene at $\mathrm{R} 1+(1.5,0)$
bond down from R2.V4; O
CH 3 right of O
.cend

The following diagram of reserpine shows that the conncctivity to carbon is ambiguous only when the OCH_{3} is connected to a bond up or a bond down.
.cstart
CH3O
bond 60
R1:benzene
$\mathbf{R 2}$: aromatic flatring5 pointing down put N at 1 with.V3 at R1.V2
H below R2.V1
R3: ring put N at 3 with .V5 at R2.VS
R4: ring put N at 1 with .V1 at R3.V3
back bond -120 from R4.V4; H
back bond 60 from R4.V3 ; H
R5: ring with .V1 at R4.V3
bond -120 ; C
double bond down from C ; O
CH3O left of C
back bond 60 from R5.V3 ; H
back bond down from R5.V4; O
CH 3 right of O
bond 120 from R5.V3 ; 0
bond right length . 1 from O ; C
double bond down ; O
bond right length . 1 from C
B : benzene pointing right
bond right from B ; OCH^{3}
bond 150 from B ; OCH3

Brackets and text

It is possible to make brackets of any size by using the branch point, BP. This is shown by the structure of poly(benzyl glutamic acid). This example also shows how to obtain Greek text as structure labeis. The $\$$ alpha $\$$ is converted into \propto by $E Q N$, and is enclosed in double quotes so that it will be passed from CHEM to EQN untouched. (Of course one must then add EQN to the pipeline that compiles the description.)

.cstart
\# a left bracket
bond right length . 1 ; BP
bond up length .3
bond right length .1
bond down length .3 from BP
bond right length .1
\# this is the mainchain amide structure bond right length . 1 from BP ; NH
bond right ; CH
\# label the CH with an alpha, intended for eqn.
\# this line says "put the north edge of the alpha
\# at the south edge of the CH^{\prime}
" $\$$ alpha $\$$ " with .n at CH.s
bond right from $\mathrm{CH} ; \mathbf{C}$
double bond up from \mathbf{C}; \mathbf{O}
bond right length .1 from C ; BP
\# a right bracket
\# a. right bracket
bond up length .3
bond left length . 1
bond right length . 1 from BP
bond down length .3 from BP ; BP
bond left length . 1
\# label the degree of polymerization
" $\$ n \$$ " with .w at BP.se
.cend

\# this is the sidechain
bond up from CH ; CH 2
"Sbetas" with .e at CH2.w
bond up from $\mathrm{CH} 2 ; \mathrm{CH} 2$
"\$gamma\$" with .e at CH2.w
bond up from CH2 : C
\# this is the benzyl ester part
double bond -60 from $\mathrm{C} ; \mathrm{O}$
bond 60 from C ; O
bond right ; CH 2 C 6 H 5
.cend
Text can be positioned with various PIC commands, as shown in the Greek letters above, and in this example:

```
.cstart
    bond }120\mathrm{ dotted
    bond }120\mathrm{ length . 3; BP
    back bond - }120\mathrm{ length . 25 from BP ; H
    front bond }120\mathrm{ length . 25 from BP; CH3
    bond 60 length . }5\mathrm{ from BP ; BP
    bond -60 length . }25\mathrm{ from BP ; H
# note the pic move command to position the text
    move left . 35 ; "(ANTI)"
    front bond }60\mathrm{ length . 25 from BP ; H
# another positioning of text
    move right . 35 ; "(SYN)"
    bond }120\mathrm{ length .4 from BP ; BP
    back bond - }120\mathrm{ length . 25 from BP ; H
    front bond }120\mathrm{ length . }25\mathrm{ from BP ; CH3
    bond }60\mathrm{ length . }5\mathrm{ from BP
    bond }60\mathrm{ dotted
.cend
```


Changing the size of structures

The default size for CHEM is 10 point text. The size of bonds, rings, etc., can be adjusted within the .cstart and cend pair by specifying size n, where n is the desired point size. The text size itself is not changed, however; and that must be done separately with TROFF .ps commands. The following example shows how CHEM could be used to make a diagram more suitable for a viewgraph.
.cstart
.ps 14
size 16
R: ring6 put O at 1 put C at 2 put O at 3 put C at 4 put O at 5 put C at 6
double bond 6 from R.V2 ; NH
double bond down from R.V4 ; NH
double bond -60 from R.V6; HN
size 10 \# this resets the size to the default value .ps 10
.cend

Communicating with PIC

Since CHEM translates input commands into PIC, it is possible to use PIC commands to draw structures that are not provided for by CHEM. Some examples of PIC commands have already been introduced, such as the at commands in the section on rings. The following are several more difficult examples.

```
.cstart
R}\mathrm{ : ring double 2,3
    line from R.V6 to R.C
    line from R.C to R.V4
X1:1/2〈R.V5,R.C\rangle
X2:1/2 {R.C,R.V2\rangle
    bond from X1 to X2
.cend
```


This relies on knowing that the center of a ring \mathbf{R} is called R.C. The PIC construct $\alpha\left\langle p_{1}, p_{2}\right\rangle$ defines a point α of the way from p_{1} to p_{2}.

The following diagram of part of DNA shows how to use PIC's bracketing construct to make two fragments that are joined together at the desired position.

.cstart

P: [
R1: flatring pointing up put N at 1 put N at 4 double 5,1
bond - 135 from R1.V4; BP
"deoxyribose" rjust with .e at BP.w
R2: ring6 put N at 2 put N at 4 double 1,2 3,4 5,6 with .V6 at RI.V2
pic Conn: R2.V2.ne
\# because naming is too restricted in pic
bond up from R2.V1; N
bond -60 from $\mathrm{N} ; \mathrm{H}$
bond 60 from $\mathrm{N} ; \mathrm{H}$
]
\# thymine
Q: [
R3: ring6 put N at 3 put N at 5 double 1,2
bond up from R3.V1; CH3
bond 120 from R3.V3; BP
"deoxyribose" 1just with .w at BP.e
double bond down from R3.V4; O
double bond -60 from R3.V6; O bond -120 from R3.V5; H
] with. O at $\mathrm{P} . \mathrm{H}+(.3,3)$
bond from Q.O.sw to P.H.ne dotted bond from Q.H.sw to P.Conn dotted
cend

Bentley (1986) for a brief history] and the program is short (see Appendices 1 and 2). We found it valuable to develop a prototype quickly, then refine the language in the light of experience by real users.

DISCUSSION

CHEM has been used by about a dozen people over the past year. They find it easy to learn and to retain for long periods of time; they are also generally pleased with the quality of the output. The main drawback cited is the lack of an interactive mode.

Interactive graphics using hand/eye coordination is arguably a natural way for a chemist to draw structure diagrams. Nevertheless, we chose to develop a "little language" rather than an interactive system for several reasons. First, the language fits naturally into the UNIX environment and can be used with existing programs, so that math, tables, text, and pictures can be interspersed with the chemical diagrams. Second, the use of simple text input feeding into TROFF provides device independence and portability: CHEM works anywhere that TROFF does since the input is a text file, and the output is TROFF. Third, because the input is just text, any text editor can be used to make systematic, global changes to structure diagrams, or to make new diagrams by cut and paste from old ones. Furthermore, there is complete and accurate control of diagram positioning and size. Finally, and perhaps most importantly, interactive systems become evolutionary dead-ends, whereas one could readily envision constructing another "little language" for a special kind of diagram that would compile into CHEM itself.

Because CHEM was implemented in AWK, the development of a prototype was very rapid [see

REFERENCES

Aho A. V., Kernighan B. W. \& Weinberger P. J. (1988) The AWK Programming Language. Addison-Wesley, Reading, Mass.
Aho A. V., Sethi R. \& Ullman J. D. (1986) Compilers: Principles, Techniques, and Tools. Addison Wesley, Reading, Mass.
Ash J. E., Chubb P. A., Ward S. E., Welford S. M. \& Willett P. (1985) Communication, Storage and Retrieval of Chemical Information. Wiley, New York.
Bentley J. (1986) Comm. ACM 29, 711.
Chemical Abstracts Service (1986) CAS Ontine News, January/February, p. 3.
Diamond R. (1984) Comput. Graphics Forum 11, 3.
Dzonova-Jerman-Blazic B. \& Trinajstic N. (1982) Compur. Chem. 6, 121.
Furuta R., Scofield J. \& Shaw A. (1982) Comput. Surv. 14, 417.

Heller S. R. (1986) Ind. Chem. News 7, 40.
Kao J. \& Watt L. (1986) Comput. Chern. 10, 47.
Kernighan B. W. (1982) Saftware-Pract. Exper. 12, 1.
Kernighan B. W. \& Pike R. (1984) The Unix Programming Environnent. Prentice-Hall, Englewood Cliffs, N.J.
Marshall J. C. (1986) J. Chem. Inf. Comput. Sci. 26, 87.
Marsili M., Floersheim P. \& Dreiding A. S. (1983) Compur. Chem. 7, 175.
Max N. L., Malhotra D. \& Hopfinder A. (1981) CompurChem 5, 19.
Pensak D. A. (1983) Ind. Res. Dev. January 74.
Rowlett R. (1985) Comput. Chem. 9, 301.
Science (1986) 230, 198.
Smith E. G. \& Baker P. A. (1975) The Wiswesser Lineformula Chemical Notation (WLN), 3rd edition. Chemical Information Management, Cherry Hill, N.J.
Todd S., Morffew A. \& Burridge J. (1983-1984) In Brit. Nat'l. Conf. on Databases.
Watt L. \& Kao J. (1985) Comput. Chem. 9, 269.
Wiswesser W. J. (1982) J. Cherm. Inf. Comput. Sci. 22, 88.

APPENDIX 1

Listing of CHEMA．AWK
The following is the listing of the CHEM program in AWK

```
BEGIE |
    macron m "cheri, macinco"
    p1-3.141592554
    4eg = 57.29578
    aetyargam*(1.0)
    日et(dc, "up 0 right 90 down 180 left 270 me 45 se 135 Ew 225 nw 315")
```



```
f
function init() {
    printef .ps\n*
    if (ELrattime++ == 0) {
        printF "copy \"X=\"\n", macros
        printe "\ttexcht = thg: textwid = .t; ewid m Ng\n", textht, cwid
        printe "\tlineht = xg; linewid = <g\n", lineht, linewid
    }
    printy "tagt: 0,0\n"
    RING = "R"; MOL"= "M"; BORtD = "B"; OTHER = "O" A manifemta
    last = OTHER
    dix = 90
}
function setparame(scale) (
    Ifnent = scale 0.2
    innewid = gcale * 0,2
    textht = scale 0. 0.15
    db = scale 0.2
    cwid = meale 0.12
    cr - meale 0.12
    Cx mcalt 0.0B F rad of invis circlem at ring verticem
    crh = scale 0.16 * ht of invis elilpse at ring vertices
    Crw = scale 0.12
    day = Beale * 0.015
    dew = scale 0.02
    * *att-west ahift for left of/right of
} ringsicie = 
SN\.cstartimbegin chem/ { init(|; inchem = 1; next }
```



```
MN.l
```



```
inchemm=0 ( { print; next { { ; print; nexerything elae
*1 == "pic" ( zhiftfields(1); print; next } pic pass-thmu
*1 - /^*/*
*1 m= "euid"
    { next } ( omment
*)== "taxtht"
-1 =m "erid
    f Eaxtht = SNF; next
f cwid =$01F; next
```



```
                                #e\taupurame(size); mext )
```



```
    lastname = mubstr($1, 1, length(s:1)-1)
    print b才
&shifteields(1)
$1 - Pond/ (bond($1); next)
```



```
|, (%)
```



```
*) = /ringlbenz/ {ring(年); mext }
```



```
$j -A[A-Z]/ (molecule(); next }
;1 == " Labei" { label(); gext }
#./
)
fugceion bond(type, 1, goen. from) {
    goen =a
    far (i = 2; i < = NF; i++)
        1f(*)== ;- )
                            Noes=i=(i+.1)
                            NT = I
        3
    leng =ab
    for lCf =2; cf S= MF: ) {
```



```
                    dir = cotdix(diz)
            olma if (sot - 人^1mmg/)
                                    leng = (ef+1)
                                    Cf 4-2
            | Blea if(cef == "to") (
                        leng=0
                        ExOm = Eielde(cE. NF)
                            break
            ) Blme if (%ef == mfrome% |
                        from = dofrom()
```

```
            } blae if(scokf-ca#/) (
                Cf = NTP+1
                break:
    } 目贯揞 {
                fromefieldm(CF, NHP)
                break
    l
    If (from - (( to ):*tor)
    leng =0
    |lme 1f (from= =| m) * no from given at all
                            from "froth late." leave(laret, dir)"" fields(ef, NF)
        printe "Lnet: Ke(xg, Kg, Kel\n", type, leng, dir, from
    last = BOND
    if (lastname 1= "")
                            labsave(lastrame, lagt, dir)
if (goes) (
    SO=gose
    molecule()
    }
}
```



```
    Cf++ %kip EErom
    mi=Scf
    if (n in labtype) "*from Thing" m> "from Thing.V.f"
    return "from " n "." leave(labtype[n], dir)
```



```
    TEturn "Erom"n n'" corner(dir)
    xFtumy fieldE(ce-1, NF)
F
function molecule( m, type) {
    n=$1
    if (n == "BPN), (N,N ne O wid 0"
            tyPe = OTHER
    } clater
        $1 =atom(n)
        typa = MOL
    }
    gmub(f[^A-Za-z0-9]/, m.n) N) for ftuff like C(OH3): zap non-alphanum
        printf "Laet: Ks: Ke with -Xs at Inst.Xa\n", \
        m, ia, leave(type,dir+t80), leave(lagt,dir)
    else if ($2 == "below")
```



```
    alse 1f ($2 mi mrightn && $3 witnofm;
```



```
        printf "Lagt: %a: %a\n", n. $0
    last = pypem
    if(1astname (a m*)
        1abmare(lagtmame, last, dir)
    labmave(n, laat, dix)
}
function label( i, v) (
    if (mubstr(labtype[sz], 1, 1) I= RING)
        exrox(EPrimte(**a in mot a ring=, $2))
    else [ vamubatr(1abtype[s2], 2, 1)
        for (i = 1; i <# V; i++)
```



```
    }
}
function ring(type, typeint, pt, varta, i) (
    pe O pointa up by deraule
    if (type -([1-0]贯)
            verte = muretr(type, length(type), 1)
    elme if (type - /flat/)
    veres = 5
    -1**
            verts = 6m
    fuged = other = **
    for (1. = 1; i en verea; i+t)
            put[i] - dml[i]=.%
    mput a arommete = withat a 0
    fOr (Cf E 2; Cf <= NF;) (
            if (sce == #pointing")
            -1Ee if (sci m=m mouble" i: sef m= "triple")
            elme if ($ef - /azom) {
                        dromatic++
                                    cf++ fondied later
            } elee iff(sef == "put") (
                    putring(verts)
                    mput++
```

```
            ) tlee if (4cE-f"#f) (
            Cf = kF+1
            break;
            ) el=(%)
                if {Bcf == "rith" |: $cf == "at*)
                rithate =1
            other = other m * ser
            0E++
            }
    1
    typeint = RIMG Ferte pt * RING i verta i dir
    if (withat == 0)
                            fuged = joinring(typeint, dir, last)
    printf "Lagt: \\n"
    makering(type, pt, verte)
```



```
    lagt = typeint
    If (lastrame l= "m)
                            labsare(lagename, last, dir)
I
function makering(type, pt. V. i. a. r) (
    if (type - /flat/)
    * vertices
    r =ringaide ( {2 * -in(pi/ष))
    printe =\te: 0,0\n"
    for (i = 0; i <= v+1; i++) {
            a=((1-1)/v*360 + pt)/ deg
```



```
        }
        if (type - fElat/) {
            printf "\tv4: v5; v5: v5\n"
            v=5
        }
    * gides
        if (nput > 0) { * hetero ...
            for (i=1;i<< v; i++) (
```



```
                                    printe("\tvNa; ellipse, invis ht Kg rid Ng at vra\m",
                                    printf("\exf at vocin", put[1], i)
                                    e1 = er
                                y=i+1
                                if(j+1
```



```
                                printf "\tline from vid to v%d chop Ng chop Ng\n", i, j, e1, c2
                                if (dbl[i] != m= ) (flat) should check i<j
                                    if (type - (flat/ &% i =m 3) (
                                } Else fat = 0.75;fix= 5
                        rat = 0.85; fix = 1.5
                                c
                                ci =c2 (puti] l=-")
                                if (put[j] l= er/fi
```



```
                                if (dbl[i]|={", rripie"; c1, c2
                                    printe "ytiline from %g*C,vKd> to Ng<C,V%d* chop *g chop Kg\n".
                                    }
```



```
                                    jE{i+1
                                    printy "\tline Erom v%d to v*d\n", 1, J
```



```
                                    if (type-tElat/ Ex 1 == 3) (
                                    | else
                                    rat - 0.85
                                    printe "\tilne from %g<C,V%d> to Ng<C,VNd>>n",
                                    if (dul[i], rat, 'ratici,
                                    printe "\tipline from %g<c,vxd> to Ng<C.vxa>\a".
                                    2-rat. i, 2-rat.')
                                    }
    }
    * circle
        if (type - /benz/ |i aromatic > 0) (
            If (type = (flat/)
            e1.0
                x =. . 5
```

```
    p printf "\tcizele rad teg at 0,0\n", r
}
function putxing(v) ( * collect "put mol at n"
    CE++
    mol = 年(cf++)
```



```
        CE++
```



```
        m = mol
        gaub(/(4-4-2n-z0-91/, "*,m)
        put[sef] = m:m atom(mol)
    l
    CE++
}
function joinmtng(type, dir, lame) ( foin a ring to momething
    if (aubmtr(last, 1; 1)=" RING) ( ming to Iing
        if (aubletr(type.3) == subiftr(laft, 3)) failis if not G=elded
                        return with .V6 at LaEt.v2"
    * ff all elae failm
    raturn mprinte("with . Nn at Lamt. Km", \
        leave(type,dir4180), leave(lame,dir))
}unction leave(lamt, d, c, ci) { feturn vertex of last in dir d
    if (lawe =m BOND)
                        return "end"
    d = reduce(d)
    if (aubatr(laser, 1, 1) =m RING)
        return ringleave(last, a)
    if (la|te =M MOL) {
        IE (d== 0 11d d== 180)
        elge if (d=00&s d < 180)
        e1se
        if (a incac)
        e1se
        retumn mprintf("xa.xin",c,c1)
    if
    if (lagt =a OTHER)
        return corner(d)
    retumn *'0
funceion ringleave(last, a, ra, treres) ( (recurn vertex of ring in dir d
    verts = mubatr(laet, 2, 1)
```



```
}
function corner(|if) {
    return de[reduce(45*int((dir+22.5)/45))]
}
function labsave(name, type, dir) {
    labtype[name] = type
    labdir[name]= dir
funceion dblring(%, (t, v1, vi) ( Fmhould canonicalize to 1,i+1 mod v
    a= 矢cx
    for (Cf**; 3cf - ハ^[1-9]/: cf+*) {
        v1 = aubstr($cf,1,1)
```



```
        elae iv dbi[v2I = d
                error(sprintf("neird *s bond in\n\t%e", d, so))
}
function cvtdir(d) { mop: "[pointing] somewhere" to degreve
    if(scx m= pointing")
    if ($cf Cf+t+{+\-]r(0-9]+/人)
        return reduce(s(of++))
    elme if (scfrn meduceirightiupidownineinwiseisw/)
        return reduce(de[!(cet+)])
    elme {
        CE**
        coturn d
    }
}
function Ieduce(d) ( raduces d to 0 <n d < 360
    while (d>0 360)
    while (d}\mp@subsup{|}{}{4
    return d
```



```
                return :
    n}=1\mp@code{lagth(*)
        n#ub = nmubc =0
        cloc - index(m, "c")
        4f (cloc == 0)
            cloc = 1
        for (i = 1; 1 <m n; 1++)
            if(mubntri(#,i, 1) !- /[A-z]/) {
                n_ub+*
                if (i < cloc)
                    mgube++
```



```
    gmub(/([0-9]+, (0-9]+){[(0-9]+()
            gaub(八.人, \\t%-.3mb.\\v*.3m"", s)
    return sprinte("atom(\"%|\", Ng, *g, *g, Kg, Kg, Kg)",
            a, (n-naub/2)*cwid, textht, (cloc-ngubc/2-0.5jscwid, crh, crw, dav)
```



```
    for (i = n; i < NF; i+t)
    *NF=
    NF--
function Eields(m1, n2, 1. 0) {
    if (m1> n2)
            return "*
    a = "%
    for (i =m1; i <=n2; it+i) (
        if (3i - /^#/!
        mreak;
    }
    retuxn s
l
Eunction set(a,g;(B,q) i, n, q} {
    n=mplic(B, q)
    for (i = 1; i<<=n; i += 2)
        A{c[il]= = q[i+1]
l
function error(a) f
    printf chem: error on line xa: %我\n", lineno, " cat 1>&2n
|
```


APPENDIX 2

Listing of PIC Macros for CHEM
These macros are used in the output that CHEM generates for PIC

```
* matcroa for chen
p1 = 3.141592654
deg = 57.29578
cx=0.08
cxh =0.76; cxw = 0.12
Fingaide=0.3
    * radiua of invis circle at ring vertices (fececr[vh])
    * ht s wid of invig blifipec around atome at ring verticea
    * Vertical shift up for atomm in ator macro
    Eide of ring!
*makering(numserts, radium, rotation, invis): make mymoteric ring
define mekering I
    Vertsms1; thimrad=s2; rot=$3
    if verts<3 || vereg>s then { illegal verts |
                        v0: elifpae invis ht crh wid crw at tt(-1)
                        v1: elilple inviE ht crn wid crw at tt(0)
    v2: eliipqe invi= ht erh wid exw at te(1)
    V2: Eliipae inviE ht Erh uid crw at te(1)
```



```
    if verts >= 5 then ( ve: Olilipae invin he crh wid erw at te(4),
    if verts >= 6 then ( V7: elilpae invis ht erh wid exw at te(6)
    if varte >= 7 then ( ve: ellipag inviE ht crh wid crw at tt(7) )
    c:0,0
)
#ringline#(invia): fill in all linea in thia ring
define rimgline: (
    for 1=0 to verts-1 do { line si from tt(i) to tt(i+1) }
}
* tt(i) -- wake vertex i of verte for thia zing
```



```
* ringeirc(relative radium): make circie at conter of ring
```



```
* Etom(text, wid, ht, pomition of cerbon)
derina atom (I
    T: 事1 wid s2 ht $3
    C: ellip:e invis ht crh wid crw at T.w + ($4,dav)
    r: ellipat invis ht cxh wid crw at m.w + (cwid/z;dav)
```



```
] 子
* double{ring, v1, v2}: interior double bond in a ring
```



```
define aromatig ( cirele rad $1. thimrad w s2 at si J
bond\length, angle in degreen, whatever)
define bonat (
        line s3 by (*1) Ein((*2)/人deg), ($1) cos((%2)/deg)
}
F fancy bonda:- x, theta, from/at
define doublebona' (
    Iine $3 invia by ($7) Ein(($2)/deg). (* %) % com(($2)/deg)
    V1: lagt line.atart; v2: lagt line.enc; dx = v2.x-v1.x; dy = v2.y-v1.y
    - norm = Eqre(dx#dx + 4ymdy)
    my = dx =.02,morm
    mx =-dy *.02/ norm
    Iine from vi +(nx, ny) to v2 + (nx,ny)
    line from V1 - (nx, ny) to v2 - (nx,ny)
    move to vi
ferine ablbond ( doublebond(it, s2, 53) }
define dblbond f do
```



```
    norm = tqxt(dxmdx + dyedy)
    ny = dx .025 / noxm
    nx = -dy .025, norm
    line from vi + (mx,ny) to vz + (nx, ny)
    line Exom vi - (nx,ny) to vz - (nx,ny)
    line from vi to v2
    move to v2
}
defint backkhond (
```



```
    v1: lame line.start; v2: lamt inine.end; dx m v2.x-v1.x; dy m v2.y-vt.y
    noxim = sqxt(dx**ix + dy%dy)
    n= norm/m.025
    ny=dx .00% norm
    n= -dy -02 < norm
    fox i = 1 to n do (
                x又: i/m<U1,V2>
                line fxom xz + (nx,ny) to xz - (mx,my)
    l
    move to v2
|
define fronthond f
```



```
    V1: lamt line.meart; v2: lamet line.end; dx = v2.x-vi.x; dy=vz.y-v1.y
    ah = arrowht: aw = drrowwid; ahead = arrowhemed
    arrowht = mqxt(dx*dx * dy*dy)
    arrowrid=0.05
    axrowhamd = 7
    line <- Erom vi to v2
    arrowht = ah; arrowwid = aw; arrowhead = ahead
}
define label {
    "\-3j\a0" at . &<< 1.C,#1.v1>
```



```
    "\-33\80" at .g<< 1.C,$1.v3>
```



```
}
define ringe {[
    makering(a, ringside * 8/6, $1);
```



```
]}
define ring7 {[
    mekering(7, ringeide * 7/6, 5t);
```



```
1}
define ringe {!
    makering(6, ringraide, $1);
    if <2 =F 0 then { ringlinem() } else { $3 }
] }
```

```
define ring5 {[
    makering(5, ringaide * 5/6, &1);
```



```
J}
define ring4 {[
        makering(4, ringside * 4/6, (1);
        if $2=0 0 then {ringlines() } -lse { $3 }
]}
dafine ring3 {[
    makering(3, ringmide 3/6, *);
    If $2 == 0 then {ringlimei() } Else ( $3 }
]}
define benzene {[
    makering(6, rimgside, *1);
    1E $2 == 0 than { cinglimen() } elme { $3 }
    ringcirc(.5)
j)
define. ring ( ring6($1, 32, %3) )
define flatring (!
    makering(6, ringaide, $1): V4: V5; V5: V6; verea = 5
```



```
j)
define flatring5 { flatring($1, $2. 33) }
* encoded mubats, mubat at v-1 or mull, ...
        * so far handles only 4 to 6 properly
define hcycle I
        c1 = e2 = e3 - c4 = c5 = e6 - 0; de mer
        If $1 X 2 == 0 then {$2 at vi; ci= me, 
        if S1 X 2m== 0 then ( $3 at v2; c2 = de de
        if $1 % 5 =m 0 then i $4 at v3; e3=de;
        if 51\times7=0 then { $5 st v4; C4 = de)
```



```
        line from v3 to V4 chop c3 chop c4
        linefrom V3 to V4 chop c3 chop c4 to vi chop c4 chop ei }
        if verta m= 4 then { line from v4 to vi chop c4 chop ei }
        if verte tws then{ line from vS to vi, chop c5 chop ci f
        if verts > 5 then { line from v5 to v6 chop c5 chop c6 }
```


[^0]: * For example, some of the American Institute of Physics (AIP) journals such as Physical Reviews and the Journal of Mathematical Physics waive page charges for manuscripts that are submitted on tape. The Biophysical Journal reduces page charges, the exact amount depending upon whether the manuscript is transmitted to the publisher by floppy disk, magnetic tape, or electronically.

