
-- --

Awk — A Pattern Scanning and Processing Language

ALFRED V. AHO, BRIAN W. KERNIGHAN AND PETER J. WEINBERGER

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation ofaawwkk, a programming language
which searches a set of files for patterns, and performs specified actions upon records or
fields of records which match the patterns.AA wwkk makes common data selection and trans-
formation operations easy to express; for example,

length > 72

is a completeaawwkk program that prints all input lines whose length exceeds 72 characters.
The program

{ $1 = log($1); print }

prints each input line with the first field replaced by its logarithm. Theprogram

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from the first field of the previous line.

Patterns may include boolean combinations of regular expressions and of relational
operators on strings, numbers, fields, variables, and array elements. Actions may include:
the same matching constructions as in patterns; arithmetic and string expressions and
assignments;if-else, while, and for statements; formatted output; and multiple output
streams.

1. INTRODUCTION

A surprising amount of data processing amounts to lit-
tle more than minor transformations on information
that already exists — selecting parts of it (‘‘print all the
records where the second field is positive’’); rearrang-
ing (‘‘print the second and third fields of each record, in
the opposite order’’); and performing simple transfor-
mations (‘‘add up the numbers in the first field and
compute the average’’).

None of these tasks is difficult, yet all too often
it is a nuisance to encode them in a conventional pro-
gramming language. Most of the programming effort
involves trivial details, like declarations and initializa-
tion, handling I/O and conversions, and parsing the
input records.Yet when the job is done, the program
that results frequently has no long term value — only a
one-shot program was needed.

Awk is a program designed to make it easy to
write programs of the form suggested above — simple
information retrieval, text manipulation, and report gen-

eration procedures.Wherever possible, the trappings of
conventional programming languages have been elimi-
nated in favor of simple, concise expression and default
handling of common cases.Accordingly, awk vari-
ables are not declared, and are initialized to either the
null string or zero by default. Likewise, data types
need not be defined; variables take on numeric or string
values as appropriate.The language is interpreted, not
compiled, so there are no load modules. Input and file
handling is done by an implicit input loop.

Program Structure

The basic operation ofawk is to scan a set of
input lines, searching for lines which match patterns
specified by the user. An awk program has the form:

pattern {action }
pattern {action }
...

Each line of input is matched against each of the pat-
terns in turn.For each pattern that matches, the associ-

-- --

- 2 -

ated action is executed. Whenall the patterns have
been tested, the next line is fetched and the matching
starts over.

Either thepattern or the {action} may be omit-
ted, but not both. If there is no action for a pattern, the
matching line is copied to the output.If there is no pat-
tern for an action, then the action is performed for
ev ery input line. A l ine that matches no pattern is
ignored.

Input and sequencing through the patterns is
entirely automatic; there is no control flow other than
naming the patterns and actions.Awk is normally
given aset of files to process; the sequencing from one
file to the next is also implicit.(The name of the cur-
rent input file is available as the value of the variable
FILENAME .)

This model of computation — processing a
stream of input by selecting and transforming elements
which are ‘‘interesting’’ — has proven to be a useful
one on theUNIX† system; awk is one in a family of
such programs.We will discuss the design in Section
4.

Records and Fields

One of the most valuable services thatawk per-
forms is to break an input stream into records and
fields. A record is a string of characters followed by a
record separator. Normally the record separator is a
newline character, so by defaultawk processes its input
one line at a time. The number of the current record is
available in a variable namedNR.

Each input record consists offields, which by
default are separated by blanks or tabs. Fields are
referred to as$1, $2, and so forth, where$1 is the first
field; $0 is the whole input record itself. The number
of fields in the current record is available in a variable
namedNF.

The input field and record separators are stored
in variables calledFS andRS. They may be changed at
any time to any single character. If the record separator
is made null, then a blank input line terminates a
record, and blanks, tabs and newlines are all field sepa-
rators. Thispermits convenient handling of multi-line
records.

2. PATTERNS

A pattern in front of an action acts as a selector
that determines whether the action is to be executed.
There are four basic patterns:

BEGIN
END
regular expressions
relational expressions

†UNIX is a Trademark of Bell Laboratories.

More complex patterns can be formed by combining
these elements with boolean connectives and by form-
ing ranges, as described below.

BEGIN and END

The patternBEGIN matches the beginning of
the input, before the first record is read. The pattern
END matches the end of the input, after the last record
has been processed.BEGIN andEND thus provide a
way to gain control before and after processing, for ini-
tialization and wrapup.

As an example, the field separator can be set to a
colon by

BEGIN { FS = ":" }
... rest of program ...

or the input lines may be counted by

END { print NR }

Regular Expressions

The simplest regular expression is a literal string
of characters enclosed in slashes, like

/smith/

This is a completeawk program which will print all
lines which contain any occurrence of the name
‘‘ smith’’. If a line contains ‘‘smith’’ as part of a larger
word, it will also be printed.

More generally, an awk regular expression can
be:

any single character, which matches itself,

a dot ‘‘ .’’ , which matches any single character,

a character class (e.g.,[0123456789]), which
matches any single character from the class,

an abbreviated character class (e.g.,[0−9]),

a complemented character class (e.g.,[ˆ0−9]),
which matches any characternot in the class,

ˆ, a metacharacter which matches the beginning
of a string, and

$, a metacharacter which matches the end of a
string.

Regular expressions may be combined to form
more complex regular expressions in the following
manner.

The regular expressionab where a and b are
regular expressions matches a string if eithera
or b matches that string.

The regular expressionab (the concatenation of
a andb) matches a stringxy if a matches a suf-
fix of x andb a prefix of y.

The regular expressionsa∗ , a+, and a? match
respectively zero or more, one or more, and zero
or one instances of the regular expressiona.

-- --

- 3 -

As is customary, has the lowest precedence, then con-
catenation, then the unary operators∗ , + and?. Paren-
theses may be used to group regular expressions.

As an example, theawk program

/[Aa]ho [Ww]einberger [Kk]ernighan/

will print all lines which contain any of the names
‘‘ Aho,’’ ‘‘ Weinberger’’ or ‘ ‘Kernighan,’’ w hether capi-
talized or not.

Regular expressions must be enclosed in slashes.
Within a regular expression, blanks and the regular
expression metacharacters are significant.The special
meaning of any character may be temporarily turned off
by preceding it with a backslash:

/ \/\∗ .∗ \∗ \//

matches any string of characters enclosed in/∗ and∗ /.

Relational Expressions

An awk pattern can be a relational expression of
the form

expression relop expression

whererelop is one of the comparison operators<, <=,
== (equal to),!= (not equal to),>, >=, or one of the
matching operators∼ (matches) or!∼ (does not match).
For example, the program

$2 > $1 + 100

selects lines where the second field is at least 100
greater than the first field. Similarly,

NF % 2 == 0

prints lines with an even number of fields.(‘‘ % ’’ i s the
remainder operator.)

In comparisons, if both operand expressions are
strings, a string comparison is made; otherwise a
numeric comparison is made. Thus,

$1 >= "s"

selects lines that begin with ans, t, u, etc. In the
absence of any other information, fields are treated as
strings, so

$1 > $2

performs a string comparison.

One can also specify that any field or variable
matches or does not match a regular expression with
the operators∼ and!∼ . The program

$1 ∼ /[jJ]ohn/

prints all lines where the first field matches ‘‘john’’ or
‘‘ John.’’ Pattern matches are unanchored, so this will
also match ‘‘Johnson’’, ‘‘St. Johnsbury’’, and so on.To
restrict it to exactly[jJ]ohn , useˆ and$:

$1 ∼ /ˆ[jJ]ohn$/

Combinations of Patterns

A pattern can also be formed by combining pat-
terns with parentheses and the operators(or), &&
(and), and! (not). For example,

$1 ∼ /debit/ && $2 < 0

selects lines in which the first field contains the string
‘‘ debit’’ and the second is negative. && and guaran-
tee that their operands will be evaluated from left to
right; evaluation stops as soon as truth or falsehood is
determined.

Pattern Ranges

A pattern range consists of two patterns sepa-
rated by a comma, as in

pat1, pat2 { ... action ...}

The action is performed for each line between an
occurrence ofpat1 and the next occurrence ofpat2
(inclusive). For example,

NR == 100, NR == 200

prints lines 100 through 200 of the input, while

/start/, /stop/

prints all lines between successive occurrences ofstart
and stop, or to the end of the input if no terminating
stopoccurs.

Pattern ranges reduce the need to use variables
to record state information.Without a pattern range,
the previous example would be written

/start/ { start = 1 }
start == 1
/stop/ { start = 0 }

which is certainly less clear.

3. ACTIONS

An action is a sequence of statements separated
by newlines or semicolons.

Printing

Many awk programs do nothing more than print
all or part of each record. The program

{ print }

prints each record, thus copying the input to the output
intact. Morecommon is to print one or more fields
from each record.For instance,

{ print $2, $1 }

prints the first two fields in reverse order. Expressions
separated by a comma in the print statement will be
separated by the current output field separator when
printed:

{ print NR, NF, $0 }

prints each record preceded by the record number and

-- --

- 4 -

the number of fields.

The current output field separator and output
record separator may be changed by setting the vari-
ablesOFS and ORS respectively. The output record
separator is appended to the output of eachprint state-
ment.

Output may be diverted to multiple files; the
program

{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field of each line on the filefoo1, and the
second field on filefoo2. (The output files are created
if necessary.) The file name can be the value of an
expression as well as a constant:

{ print $1 >$2 }

uses the contents of field 2 as a file name.

Output may also be diverted into another pro-
cess, using the pipe facility of theUNIX operating sys-
tem.1 For instance,

NF == 2 { print $2, $1 "sort" }

prints those records with two fields into the program
sort.

The formatting provided by theprint statement
is usually adequate. When finer control over output
format is required, however, the printf statement may
be used:

printf format, expr , expr, ...

formats the expressions in the list according to the
specification informat and prints them.With printf
no output separators are produced automatically; they
must be included explicitly into theformat string. The
capabilities ofprintf are the same as those of the stan-
dard I/O library used with the programming language
C.2 They include formatting of decimal, octal, hexadec-
imal, floating point (bothf ande notations), strings, etc.

Built-in Functions

Awk provides a number of built-in functions to
facilitate string handling and simple arithmetic.The
function length computes the length of a string of char-
acters. Thisprogram prints each record, preceded by
its length:

{ print length, $0 }

length by itself is a ‘‘pseudo-variable’’ that yields the
length of the current record;length(arg) is a function
that yields the length of its argument, as in the equiv-
alent

{ print length($0), $0 }

The argument may be any expression.

Awk also provides the arithmetic functionssqrt,
log, exp, and int .

The name of one of these built-in functions by
itself, with no arguments or parentheses, stands for the
value of the function on the whole record. The pro-
gram

length < 10 length > 20

prints lines whose length is less than 10 or greater than
20.

The functionsubstr(s, m, n)returns as value the
substring ofs that begins at positionm (origin 1) and is
at mostn characters long.If n is omitted, the substring
returned goes to the end ofs. The function
index(s1, s2)returns the first position ins1 where s2
occurs, or zero if it does not. The functionsprintf(for-
mat, expr, expr, ...) formats the expressions in the
printf format specified byformat , and returns the
resulting string.

Variables, Expressions, and Assignments

The basic elements in expressions are

floating point numbers
strings
variables
field names
array elements
function calls

Within an expression, these elements can be combined
using arithmetic and string operators.All arithmetic is
done internally in floating point.In addition to the
usual arithmetic operators+, −, ∗ , /, and % (mod), the
C increment++ and decrement−− operators are also
available (both prefix and postfix), as are the assign-
ment operators=, +=, −=, ∗ =, /=, and %= . (++n incre-
mentsn; x+=y stands forx=x+y.) Note that assign-
ment operatorsare operators: assignments may occur in
expressions.

Concatenation is the only string operator. In any
expression, adjacent operands are concatenated (after
being converted to strings if necessary).For example

length($1 $2 $3)

returns the length of the first three fields. Or in aprint
statement,

print $1 " is " $2

prints the two fields separated by ‘‘ is ’ ’.

The most important aspect ofawk arithmetic
and string operations is that variables and expressions
take on either numeric (floating point) or string values
according to context. For example, in

x = 1

x receives a numeric value, while in

x = " smith"

it receives a string. Stringsare converted to numbers
and vice versa whenever context demands it. For

-- --

- 5 -

instance,

x = " 0" + "4"

assigns 4 tox, whereas

x = 0 4

assigns the string ‘‘04’’. As another instance, one could
print even-numbered records by

NR ∼ /[02468]$/

Strings which cannot be interpreted as numbers in a
numerical context will have numeric value zero.

By default, variables (other than built-ins) are
initialized to the null string, which has numeric value
zero. Thisdefault initialization eliminates the need for
most BEGIN sections; for example, the sums of the
first two fields can be computed by

{ s1 += $1; s2 += $2 }
END { print s1, s2 }

Field Variables

Fields share all of the properties of variables.
Thus one can replace the first field of each input line by
a sequence number with:

{ $1 = NR; print }

or accumulate two fields into a third:

{ $1 = $2 + $3; print }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print
}

Field references may be numerical expressions, as in

{ print $i, $(i+1), $($i) }

Each input line is split into fields automatically
as necessary. It is also possible to split any variable or
string into fields:

n = split(s, array, sep)

splits the the strings into array[1] , ..., array[n] . The
number of elements found is returned. If thesepargu-
ment is provided, it is used as the field separator; other-
wiseFS is used.

Arrays

As shown above, array elements are not
declared; like variables, they spring into existence by
being mentioned.An array subscript may beany non-
null value, including a non-numeric string.As an
example of a conventional numeric subscript, the state-
ment

x[NR] = $0

assigns the current input record to theNR-th element of
the arrayx. In fact, it is possible (up to the limit of
memory) to process the entire input in a random order
with theawk program

{ x[NR] = $0 }
END { ... program ... }

The first action merely records each input line in the
arrayx.

Any expression can be used as a subscript in an
array reference. Thus

x[$1] = $2

uses the first field of a record (as a string) to index the
arrayx.

Non-numeric array subscripts give awk a capa-
bility rather like the associative memory of Snobol
tables. Supposeeach line of input contains two fields, a
name and a non-zero value. Namesmay be repeated;
the task is to print a list of each unique name followed
by the sum of all the values for that name. This can be
done with the program

{ amount[$1] += $2 }
END { for (name in amount)

print name, amount[name] }

To sort the output, replace the last line by

print name, amount[name] "sort"

Flow-of-Control Statements

Flow of control within an awk action can be
achieved using the statementsif-else, while, for , and
statement grouping with braces, as in C.

The if statement has the syntax

if (condition)
statement

else
statement

The condition is evaluated; if it is true, thestatement
following theif is executed. Theelsepart is optional.

Thewhile statement has the form

while (condition)
statement

The condition is tested; if it is true,statement is
executed, and the loop repeats. It terminates whencon-
dition is false. For example, to print all input fields one
per line,

i = 1
while (i <= NF) {

print $i
i++

}

Thefor statement is also exactly that of C:

-- --

- 6 -

for (expression; condition; expression)
statement

Thus

for (i = 1; i <= N F; i++)
print $i

does the same job as thewhile statement above.

There is a variant of the for statement that
allows one to iterate over the subscripts of an array in
an undefined order. Thus as shown above, one can
write

for (i in a)
print i, a[i]

without having to store the subscripts explicitly in
another array.

The condition part of anif , while or for state-
ment can be any relational expression (§2.3) or boolean
combination of relational expressions. Notethat this
permits a condition to contain regular expression
matches that use the match operators∼ and !∼ . Of
course, there are a variety of ways to write any particu-
lar program; the third example of the abstract may also
be written as

{ if ($1 != prev) {
print
prev = $1

}
}

Finally, there are four statements that control the
various loops.Thebreak statement causes an immedi-
ate exit from an enclosingwhile or for ; continue
causes the next iteration to begin. Thestatementnext
causesawk to skip immediately to the next record and
begin scanning the patterns from the top.The state-
mentexit causes the program to behave as if the end of
the input had occurred.

Comments may be placed inawk programs:
they begin with the character# and end with the end of
the line, as in

print x, y # this is a comment

4. DESIGNAND IMPLEMENT ATION

As mentioned earlier, the UNIX system already
provides several programs that operate by passing input
through a selection mechanism. Programs in thegrep
family3 print all lines that match a single regular
expression.Sed3 provides most of the editing facilities
of the editored, applied to a stream of input. None of
these programs provides numeric capabilities, logical
relations, or variables.

Lex4 provides general regular expression recog-
nition capabilities. Because it generates C programs, it
is essentially open-ended in its capabilities.The use of
lex requires a knowledge of C programming, however,

and alex program must be compiled and loaded before
use, which discourages its use for one-shot applica-
tions.

Awk is intended to fill in another part of the
matrix of possibilities. It provides general regular
expression capabilities and an implicit input/output
loop. Butit also provides convenient numeric process-
ing, variables, more general selection, and control flow
in the actions. It does not require compilation or a
knowledge of C. Finally, awk provides a convenient
way to access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and numbers
completely, by treating all quantities as both string and
numeric, and deciding which representation is appro-
priate as late as possible. This works well; in most
cases, it produces exactly the effect that is wanted.

Most of the effort in developing awk went into
deciding whatawk should and should not do (for
instance, it doesn’t do string substitution) and what the
syntax should be (no explicit operator for concatena-
tion) rather than on writing or debugging the code.We
have tried to make the syntax expressive but easy to use
and well adapted to scanning files that contain both tex-
tual and numerical information.For example, implicit
initializations and the absence of declarations, while
probably a bad idea for a general-purpose programming
language, are desirable in a language that is meant to be
used for tiny programs that are often composed on the
command line.

The development ofawk was significantly short-
ened by usingUNIX tools. Thegrammar is specified
with yacc;5 the lexical analysis is done bylex. Using
these tools made it easy to vary the syntax of the lan-
guage during development. Theregular expression rec-
ognizers are deterministic finite automata constructed
directly from the expressions. Currently, an awk pro-
gram is translated into a parse tree which is then
directly executed by a simple interpreter. This aspect
of the language has changed radically several times,
however, and may well do so again.

5. EXPERIENCE

Patterns of Use

Awk has been in use for more than a year in a
variety of UNIX installations at Bell Laboratories.Its
usage seems to fall into three broad categories. Oneis
what might be called ‘‘report generation’’ — process-
ing data to extract information and produce simple
statistics like counts, averages, sub-totals, etc.For
example, we use anawk program to summarize the
information in the file whereawk usage data is
recorded.

A second major area of use is as a data trans-
former, converting information from the form produced
by one program or person into that expected by another.

-- --

- 7 -

The simplest examples merely select fields, perhaps
with rearrangements.In fact, it appears that ifawk
provided nothing more than the ability to select fields,
it would still be a widely-used program.Another
example is a program which converts map coordinates
in one projection into another so a map can be drawn.

A third area of application is the writing of sim-
ple data validation programs, such as verifying that a
field contains only numeric information or that certain
delimiters are properly positioned. The combination of
textual and numeric processing is invaluable here; most
data validation tasks seem to involve both.

Timing

Awk was designed primarily for ease of use
rather than processing speed; the delayed evaluation of
variable types and the necessity to break input into
fields makes high speed difficult to achieve in any case.
Nonetheless, the program seems adequately fast for
most purposes.Table I shows the execution (user +
system) time on a PDP-11/70 of the programssed, lex
andawk on the following simple tasks:

1. countthe number of lines:

END { print NR }

2. printall lines containing ‘‘doug’’:

/doug/

3. print all lines containing ‘‘doug’’, ‘ ‘ken’’ or
‘‘ dmr’’:

/ken dougdmr/

4. printthe third field of each line:

{ print $3 }

5. print the third and second fields of each line, in
that order:

{ print $3, $2 }

6. appendall lines containing ‘‘doug’’, ‘ ‘ken’’, and
‘‘ dmr’’ to files ‘‘jdoug’’, ‘ ‘jken’’, and ‘‘jdmr’’,
respectively:

/ken/ { print > "jken" }
/doug/ { print > "jdoug" }
/dmr/ { print > "jdmr" }

7. printeach line prefixed by ‘‘line-number : ’’:

{ print NR ": " $0 }

8. sumthe fourth column of a table:

{ sum += $4 }
END { print sum }

In all cases, the input was a file of 450,000 characters,
in 10,000 lines. Each line contained 8 fields.

Table 1: Timing Comparisons

Task awk lex sed

1 15.0 65.1 10.2
2 25.6 150.1 11.6
3 29.9 144.2 15.8
4 33.3 67.7 29.0
5 38.9 70.3 30.5
6 46.4 104.0 16.1
7 71.4 81.7
8 31.1 92.8

For small input files, the predominant speed
problem is simply thatawk is a big program (50K
bytes) and thus takes longer to be loaded than does a
small program.

Clearly there is a limit to the size of file for
which one can economically use linear search. It is an
interesting practical problem to make the program fast
at linear search, but it is also a good research problem
to make it work in a natural way with files stored in
some other way. For instance, it is possible to search
for restricted classes of regular expressions6 without
looking at all the characters; we have not attempted to
use such an algorithm.

Directions for Futur e Work

Considerable discussion (and compromise) has
gone into the design ofawk. One obvious defect is the
lack of a subroutine facility. This deficiency is not seri-
ous for small, one-time applications, but as users
become more experienced and sophisticated, the call
for subroutines may become more compelling.The
trend toward longer, more complex user programs also
points out the shortcomings of the terse and uninforma-
tive syntax error messages produced by the current
implementation.

The ability to handle numbers, strings and regu-
lar expressions at the same time seems to have worked
out well. In most cases, each variable has only one
type, and in those cases where coercion is necessary
(most often for comparison), the results are what the
user expects. Itis true that when the coercion is not the
right one, the results can be mystifying to the uniniti-
ated, but this has happened infrequently enough so as to
have an acceptable cost.

At the moment,awk has no explicit command
for text substitution, although some substitutions can be
implemented (clumsily) withsubstr andlength. Incor-
porating a general text substitution command would
affect the type of regular expression matching algo-
rithm used. The algorithm currently used constructs a
compact deterministic finite automaton directly from
the regular expression. Theautomaton finds the short-
est possible match with no backtracking.This

-- --

- 8 -

approach is good for fast matching but for textual
replacement it is necessary to isolate the leftmost
longest substring that matched.We hav e also consid-
ered adding a dynamic regular expression capability,
but hav e not yet found the applications to justify this
inclusion.

Also under consideration is some way of making
RPG-like ‘‘control breaks’’ easier to program.In this
kind of data processing, an action is invoked when the
value of some field changes from one record to the
next. This can always be done with ‘‘state variables ’’
but the resulting programs are messy and unclear. Pat-
tern ranges address only simple aspects of the problem.

Finally, we hav ealready done some experimen-
tation with a language based onawk that has normal
control flow and input statements. This is a very high
level language, which permits arbitrary file manipula-
tions, at the price of somewhat more programming for
those cases whereawk already does the job.

6. CONCLUSIONS

Awk has been used in a broad variety of tasks,
ranging from budget preparation, through telephone
network planning, even to finding Chinese restaurants
within walking distance of theaters in Manhattan.It
has demonstrated that there is a considerable market for
a stand-alone language which enables common data
processing tasks to be done with little programming
effort. Becauseof its ease of use,awk has often been
used to perform bookkeeping and data manipulation
tasks that otherwise would have been done manually or
not done at all.

The UNIX programming environment is heavily
based on the idea that programs should communicate
with each other. It has been our experience thatawk is
of considerable help here too, as a data transformer
between a program which produces output in one form
and a second that requires it in some other form. In a
sense,awk, like many other UNIX programs, acts as an
‘‘ impedance matcher,’’ adapting one program to
another.

References

1. D. M. Ritchie and K. Thompson, ‘‘The UNIX

Time-Sharing System,’’ Bell Sys. Tech. J. 57(6),
pp.1905-1929 (1978).

2. B. W. Kernighan and D. M. Ritchie,The C Pro-
gramming Language, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

3. K. Thompson, D. M. Ritchie, and D. McIlroy,
UNIX Programmer’s Manual, Bell Laboratories
(January 1979). Seventh Edition

4. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Gener-
ator,’’ Comp. Sci. Tech. Rep. No. 39,Bell Labo-
ratories, MurrayHill, New Jersey (D).

5. S.C. Johnson, ‘‘Yacc — Yet Another Compiler-
Compiler,’’ Comp. Sci. Tech. Rep. No. 32,Bell
Laboratories, MurrayHill, New Jersey (D).

6. R. S. Boyer and J. S. Moore, ‘‘A f ast string
searching algorithm.,’’ Comm. Assoc. Comp.
Mach.20, pp.441-452 (October, 1977).

-- --

