Awk — A Pattern Scanning and Processing Language

ALFRED VAHO, BRIAN WKERNIGHAN AND PETER WEINBERGER

Bell Laboratories
Murray Hill, New Jerse¢y 07974

ABSTRACT

This paper describes the design and implementaticakf a programming language

which searches a set of files for patterns, and performs specified actions upon records or
fields of records which match the patterawk makes common data selection and trans-
formation operations easy to express; for example,

length > 72

is a completeaawk program that prints all input lines whose length exceeds 72 characters.

The program

{$1 =log(%$1); print }
prints each input line with the first field replaced by itslithm. Theprogram

$1 !'=pres { print; prer = $1}

prints all lines in which the first field is different from the first field of the previous line.

Paterns may include boolean combinations of regular expressions and of relational
operators on strings, numbers, fieldsriables, and array elements. Actions may include:
the same matching constructions as in patterns; arithmetic and string expressions and
assignmentsif-else while, and for statements; formatted output; and multiple output

streams.

1. INTRODUCTION

A surprising amount of data processing amounts to lit-
tle more than minor transformations on information
that already exists — selecting parts of it (“print all the
records where the second field is pesit); rearrang-
ing (“print the second and third fields of each record, in
the opposite orde}, and performing simple transfor
mations (“add up the numbers in the first field and
compute theaerage”).

None of these tasks is difficult, yet all too often
it is a nuisance to encode them in aventional pro-
gramming language. Most of the programmingpef
involves trivial details, like declarations and initializa-
tion, handling I/O and caersions, and parsing the
input records. Yet when the job is done, the program
that results frequently has no long term value — only a
one-shot program was needed.

Awk is a program designed to neakt easy to
write programs of the form suggested abe— smple
information retrigal, text manipulation, and report gen-

eration proceduresWherever possible, the trappings of
corventional programming languagesveabeen elimi-
nated in &va of simple, concise expression and alet
handling of common casesAccordingly, awk vari-
ables are not declared, and are initialized to either the
null string or zero by defult. Likewise, data types
need not be defined; variableseak rumeric or string
values as appropriateThe language is interpreted, not
compiled, so there are no load modules. Input and file
handling is done by an implicit input loop.

Program Structure

The basic operation adwk is to scan a set of
input lines, searching for lines which match patterns
specified by the useAn awk program has the form:

pattern
pattern

{action }
{action }

Each line of input is matched @gst each of the pat-
terns in turn.For each pattern that matches, the associ-

ated action is xecuted. Whenall the patterns he
been tested, the next line is fetched and the matching
starts oer.

Either thepattern or the {faction} may be omit-
ted, but not both. If there is no action for a pattern, the
matching line is copied to the outpuf.there is no pat-
tern for an action, then the action is performed for
evay input line. A line that matches no pattern is
ignored.

Input and sequencing through the patterns is
entirely automatic; there is no control\lather than
naming the patterns and actiongwk is normally
given aset of files to process; the sequencing from one
file to the next is also implicit(The name of the cur
rent input file is wailable as the &lue of the ariable
FILENAME .)

This model of computation — processing a
stream of input by selecting and transforming elements
which are ‘interesting’ — has proen to be a seful
one on theunixt system;awk is one in a family of
such programsWe will discuss the design in Section
4,

Records and Fields

One of the most valuable services thaik per-
forms is to break an input stream into records and
fields. Arecord is a string of characters followed by a
record separatorNormally the record separator is a
newline characterso by @faultawk processes its input
one line at a time. The number of the current record is
awailable in a variable namediR.

Each input record consists @ields, which by
default are separated by blanks or tabs. Fields are
referred to a$l, $2, and so forth, wher&l is the first
field; $0 is the whole input record itself. The number
of fields in the current record ivalable in a \ariable
namedNF.

The input field and record separators are stored
in variables calle#FS andRS. They may be changed at
ary time to aw single characterlf the record separator
is made null, then a blank input line terminates a
record, and blanks, tabs and newlines are all field sepa-
rators. Thispermits comenient handling of multi-line
records.

2. PATTERNS

A pattern in front of an action acts as a selector
that determines whether the action is to keceted.
There are four basic patterns:

BEGIN

END

regular expressions
relational expressions

TUNIX is a Trademark of Bell Laboratories.

More comple patterns can be formed by combining
these elements with boolean connestiand by form-
ing ranges, as described hglo

BEGIN and END

The patternBEGIN matches the lggnning of
the input, before the first record is read. The pattern
END matches the end of the input, after the last record
has been processe®@EGIN and END thus preide a
way to gain control before and after processing, for ini-
tialization and wrapup.

As an example, the field separator can be set to a
colon by

BEGIN {FS=""}
... rest of pogram ...

or the input lines may be counted by
END { print NR }

Regular Expressions

The simplest regular expression is a literal string
of characters enclosed in slashes, like

[smith/

This is a completewk program which will print all
lines which contain an occurrence of the name
“smith”. If a line contains‘'smith” as part of a lager
word, it will also be printed.

More generally an awk regular expression can
be:

ary single charactemwhich matches itself,
a dot “.” , which matches ansingle character,

a daracter class (e.g[0123456789), which
matches aysingle character from the class,

an abbreviated character class (4@-9]),

a omplemented character class (e[§0-9]),
which matches gncharactemotin the class,

", a metacharacter which matches thajioaing
of a string, and

$, a metacharacter which matches the end of a
string.

Regular pressions may be combined to form
more complg regular expressions in the foilldng
manner.

The regular gpressionalb wherea and b are
regular expressions matches a string if eitter
or b matches that string.

The regular gpressionab (the concatenation of
a andb) matches a stringy if a matches a suf-
fix of x andb a prefix of y.

The regular gpressionsa] a+, and a? match
respectiely zero or more, one or more, and zero
or one instances of the regular expression

-3-

As is customaryi has the lowest precedence, then con-
catenation, then the unary operatdrs and?. Paren-
theses may be used to group regular expressions.

As an example, thawk program
/[Aa]ho I[[Ww]einberger I[[Kk]ernighan/

will print all lines which contain an of the names
“Aho,” “ Weinberger' or ‘‘Kernighan; w hether capi-
talized or not.

Regular expressions must be enclosed in slashes.
Within a regular expression, blanks and thgutar
expression metacharacters are significahihe special
meaning of ay character may be temporarily turned of
by preceding it with a backslash:

JA'A\mRR BV}

matches aystring of characters enclosed/iand(l.

Relational Expressions

An awk pattern can be a relational expression of
the form

expression relop expression

whererelop is one of the comparison operaters<=,
== (equal to),!= (not equal to)>, >=, or one of the
matching operatorsl (matches) ot (does not match).
For example, the program

$2>$1 + 100

selects lines where the second field is at least 100
greater than the first field. Similarly,

NF % 2 ==
prints lines with an\en number of fields.(“ %" i s the
remainder operator.)

In comparisons, if both operand expressions are
strings, a string comparison is made; otherwise a
numeric comparison is made. Thus,

$1>="s"

selects lines that begin with &) t, u, ec. In the
absence of another information, fields are treated as
strings, so

$1 > $2

performs a string comparison.

One can also specify thatyafield or \ariable
matches or does not match aukar expression with
the operator&§land![1l The program

$10/[jJ]ohn/

prints all lines where the first field matchgehn™ or
“John’ Pattern matches are unanchored, so this will
also match‘Johnsor’, “St. Johnshury”, and so on.To
restrict it to exacthfjJJohn, use™ and$:

$10/7jJJohn$/

Combinations of Patterns

A pattern can also be formed by combining pat-
terns with parentheses and the operatorér), &&
(and), and (not). For example,

$10/debit/ && $2 <0

selects lines in which the first field contains the string
“ debit” and the second is gdive. && and || guaran-
tee that their operands will bevatuated from left to
right; evaluation stops as soon as truth or falsehood is
determined.

Pattern Ranges

A pattern range consists of wpatterns sepa-
rated by a comma, as in

patl, pat2 {... action ..}

The action is performed for each line between an
occurrence ofpatl and the net occurrence ofpat2
(inclusive). For example,

NR == 100, NR == 200
prints lines 100 through 200 of the input, while
[start/, /stop/

prints all lines between successicccurrences oftart
and stop, or to the end of the input if no terminating
stop occurs.

Pdtern ranges reduce the need to uagables
to record state informationWithout a pattern range,
the previous example would be written

[start/ {start=1}

start ==
/stop/{start =0}

which is certainly less clear.

3. ACTIONS

An action is a sequence of statements separated
by newlines or semicolons.

Printing

Many awk programs do nothing more than print
all or part of each record. The program
{print}

prints each record, thus copying the input to the output
intact. Morecommon is to print one or more fields
from each recordFor instance,

{print$2, $1}

prints the first tw fields in reerse order Expressions
separated by a comma in the print statement will be
separated by the current output field separator when
printed:

{print NR, NF, $0}

prints each record preceded by the record number and

the number of fields.

The current output field separator and output
record separator may be changed by setting #re v
ablesOFS and ORS respectiely. The output record
separator is appended to the output of qaait state-
ment.

Output may be derted to multiple files; the
program

{ print $1 >"fool"; print $2 >"fo02" }

writes the first field of each line on the fi®1, and the
second field on fildoo2. (The output files are created
if necessary The file name can be the value of an
expression as well as a constant:

{print $1 >$2 }
uses the contents of field 2 as a file name.

Output may also be wirted into another pro-
cess, using the pipadility of the UNIX operating sys-
tem1 For instance,

NF==2 {print$2, $1"sort" }

prints those records with twfields into the program
sort.

The formatting preided by theprint statement
is usually adequate. When finer contrale output
format is required, heever, the printf statement may
be used:

printf format, expr, expr, ...

formats the epressions in the list according to the
specification informat and prints them.With printf

no output separators are produced automatically; the
must be included explicitly into tHermat string. The
capabilities ofprintf are the same as those of the stan-
dard I/O library used with the programming language
C.2 They include formatting of decimal, octal, »eedec-
imal, floating point (botli ande notations), strings, etc.

Built-in Functions

Awk provides a number of built-in functions to
facilitate string handling and simple arithmeti@he
functionlength computes the length of a string of char
acters. Thisprogram prints each record, preceded by
its length:

{ print length, $0 }

length by itself is a ‘pseudo-variablé’that yields the
length of the current recordength(arg) is a function
that yields the length of its argument, as in the \equi
alent

{ print length($0), $0 }

The argument may be yexpression.

AwK also provides the arithmetic functiosgrt,
log, exp, andint.

The name of one of thesailt-in functions by
itself, with no aguments or parentheses, stands for the
value of the function on the whole record. The pro-
gram

length < 10l length > 20

prints lines whose length is less than 10 or greater than
20.

The functionsubstr(s, m, n)returns as value the
substring ofs that begins at positiom (origin 1) and is
at mostn characters longlf n is omitted, the substring
returned goes to the end of. The function
index(s1, s2)returns the first position is1 where s2
occurs, or zero if it does not. The functisprintf(for-
mat, expr, expr, ...) formats the expressions in the
printf format specified byformat, and returns the
resulting string.

Variables, Expressions, and Assignments
The basic elements in expressions are

floating point numbers
strings

variables

field names

array elements
function calls

Within an expression, these elements can be combined
using arithmetic and string operator&ll arithmetic is
done internally in floating pointIn addition to the
usual arithmetic operators —, [0 /, and % (mod), the

C increment++ and decrement—- operators are also
awailable (both prefix and postfix), as are the assign-
ment operators, +=, —=, [, /=, and %=. (++nincre-
mentsn; x+=y stands forx=x+y.) Note that assign-
ment operatorare operators: assignments may occur in
expressions.

Concatenation is the only string operatbr any
expression, adjacent operands are concatenated (after
being comerted to strings if necessarylror example

length($1 $2 $3)

returns the length of the first three fields. Or iprimt
statement,

print $1 " is " $2
prints the tvo fields separated byis .

The most important aspect afwk arithmetic
and string operations is thaanables and >@ressions
take on déther numeric (floating point) or stringalues
according to cont¢. For example, in

x=1
X receves a rumeric value, while in
X =" smith"

it receives a d¢ring. Stringsare cowmerted to numbers
and vice versa whewer context demands it. For

instance, assigns the current input record to Nie-th element of
CwAn o ngn the arrayx. In fact, it is possible (up to the limit of
x="0"+"4 L X
memory) to process the entire input in a random order
assigns 4 ta, whereas with theawk program
x=04 {x[NR] = $0}

assigns the stringd4”. As another instance, one could END {... pogram ...}

print even-numbered records by The first action merely records each input line in the

NR 01/[02468]$/ arrayx.
Any expression can be used as a subscript in an
array reference. Thus

By default, variables (other than built-ins) are X[$1] = $2
initialized to the null string, which has numerialwe uses the first field of a record (as a string) to xnithe
zero. Thisdefault initialization eliminates the need for arrayx.
most BEGIN sections; for example, the sums of the
first two fields can be computed by

Strings which cannot be interpreted as numbers in a
numerical context will hae rumeric value zero.

Non-numeric array subscriptsvgiawk a capa-
bility rather like the associate memory of Snobol
{sl+=4;s2+=$%$2} tables. Supposeach line of input contains bafields, a
END { print s1, s2} name and a non-zerale. Namesnay be repeated;
the task is to print a list of each unique name Vadd
by the sum of all the values for that name. This can be
done with the program

{amount[$1] += $2 }
END { for (name in amount)
print name, amount[name] }

Field Variables

Fields share all of the properties cdiriables.
Thus one can replace the first field of each input line by
a equence number with:
{$1=NR; print } To 9ort the output, replace the last line by
or accumulate tw fields into a third:

{$1=3%$2+ B; print }

print name, amount[name]| "sort"

or assign a string to a field: Flow-of-Control Statements
{if ($3 > 1000) Flow of control within anawk action can be
$3 = "too big" achiered using the statement$-else while, for, and
print statement grouping with braces, as in C.
} Theif statement has the syntax
Field references may be numerical expressions, as in if (condition)
{ print $i, $(i+1), $($i) } statement
else
Each input line is split into fields automatically statement

as necessanyit is dso possible to split gnvariable or

e ; The condition is evaluated; if it is true, thestatement
string into fields:

following theif is executed. Theelsepart is optional.

n = split(s, array, sep) Thewhile statement has the form
splits the the string into array[1], ..., array[n]. The while (condition)
number of elements found is returned. If 8epargu- statement

ment is preided, it is used as the field separator; other

wiseFSis used. The condition is tested; if it is truestatementis

executed, and the loop repeats. It terminates wtam
dition is false. Br example, to print all input fields one

Arrays .
per line,

As shown abee, aray elements are not)
declared; lile variables, the spring into «istence by '=_1 _
being mentioned An array subscript may beny non- while (i <= NF) {
null value, including a non-numeric stringAs an _P“nt $i
example of a coventional numeric subscript, the state- I++
ment }

X[NR] = $0 Thefor statement is also exactly that of C:

for (expression conditiorn expression
statement

Thus

for(i=1;i<=NF; i++)
print $i

does the same job as thaile statement ahe.

There is a ariant of thefor statement that
allows one to iteratever the subscripts of an array in
an undefined orderThus as shown ale, one can
write

for (iina)
print i, a[i]

without having to store the subscriptgplcitly in
another array.

The condition part of aiff, while or for state-
ment can be anrelational expression (82.3) or boolean
combination of relational ¥pressions. Notehat this
permits a condition to contain gelar epression
matches that use the match operatarand !l Of
course, there are a variety ofys to write ap particu-
lar program,; the third example of the abstract may also
be written as

{if ($1 = prev) {
print
prev=4

Finally, there are four statements that control the
various loops. Thebreak statement causes an immedi-
ate exit from an enclosingvhile or for; continue
causes the e iteration to bgin. Thestatemennext
causesawk to skip immediately to the next record and
begin scanning the patterns from the tophe state-
mentexit causes the program to bekas if the end of
the input had occurred.

Comments may be placed Bwk programs:
they begn with the characte# and end with the end of
the line, as in

print x, y # this is a comment

4. DESIGNAND IMPLEMENT ATION

As mentioned earlierthe uNix system already
provides seeral programs that operate by passing input
through a selection mechanism. Programs ingiep
family3 print all lines that match a single gar
expression.Sed® provides most of the editingtilities
of the editored, applied to a stream of input. None of
these programs provides numeric capabilities, logical
relations, or variables.

Lex4 provides general regulaxpression recog-
nition capabilities. Because it generates C programs, it
is essentially open-ended in its capabilitidhe use of
lex requires a knowledge of C programmingwauer,

and alex program must be compiled and loaded before
use, which discourages its use for one-shot applica-
tions.

Awk is intended to fill in another part of the
matrix of possibilities. It provides general gular
expression capabilities and an implicit input/output
loop. Butit also provides corenient numeric process-
ing, variables, more general selection, and contral flo
in the actions. It does not require compilation or a
knowledge of C. Finally, awk provides a cowenient
way to access fields within lines; it is unique in this
respect.

AwK also tries to intgrate strings and numbers
completely by treating all quantities as both string and
numeric, and deciding which representation is appro-
priate as late as possible. This works well; in most
cases, it produces exactly the effect that is wanted.

Most of the effort in desloping awk went into
deciding whatawk should and should not do (for
instance, it doeshdo dring substitution) and what the
syntax should be (no explicit operator for concatena-
tion) rather than on writing or debugging the cotlée
have tied to male the syntax epressve kut easy to use
and well adapted to scanning files that contain both te
tual and numerical informationFor example, implicit
initializations and the absence of declarations, while
probably a bad idea for a general-purpose programming
language, are desirable in a language that is meant to be
used for tiy programs that are often composed on the
command line.

The deelopment ofawk was dgnificantly short-
ened by usingNix tools. Thegrammar is specified
with yacc;® the lexical analysis is done tgx. Using
these tools made it easy to vary the syntax of the lan-
guage during delopment. Theaegular expression rec-
ognizers are deterministic finite automata constructed
directly from the gpressions. Currentlyan awk pro-
gram is translated into a parse tree which is then
directly executed by a simple interpreteiThis aspect
of the language has changed radicallyess times,
however, and may well do so again.

5. EXPERIENCE

Patterns of Use

Awk has been in use for more than a year in a
variety of UNIX installations at Bell Laboratoriedts
usage seems to fall into three broad gates. Onds
what might be calledreport generatio’— process-
ing data to etract information and produce simple
statistics lik oounts, aerages, sub-totals, etcFor
example, we use aawk program to summarize the
information in the file whereawk usage data is
recorded.

A second major area of use is as a data trans-
former, corverting information from the form produced
by one program or person into that expected by another

The simplest examples merely select fields, perhaps
with rearrangementsin fact, it appears that iwk
provided nothing more than the ability to select fields,
it would still be a widely-used programAnother
example is a program which cesits map coordinates

in one projection into another so a map can be drawn.

A third area of application is the writing of sim-
ple data validation programs, such as verifying that a
field contains only numeric information or that certain
delimiters are properly positioned. The combination of
textual and numeric processing iv@uable here; most
data validation tasks seem twatve both.

Timing

Awk was cesigned primarily for ease of use
rather than processing speed; the delayetlation of
variable types and the necessity to break input into
fields makes high speed difficult to acid@dn any case.
Nonetheless, the program seems adequately fast for
most purposes.Table | shows the »ecution (user +
system) time on a PDP-11/70 of the prograed lex
andawk on the following simple tasks:

1. countthe number of lines:
END { print NR }

2. printall lines containing “doug”:

/doug/

3. print all lines containing ‘doug”, ‘‘ken” or
“dmr”:

/kenldougdmr/

4. printthe third field of each line:
{print $3}

5. printthe third and second fields of each line, in
that order:

{print $3, $2}

6. appendill lines containing‘doug”, ‘‘ken”, and

“dmr” to files ‘jdoug”, ‘‘jken”, and ‘jdmr”,
respectiely:

/ken/ {print > "jken"}
/doug/{print > "jdoug" }
/dmr/ { print > "jdmr" }
7. printeach line prefixed by “line-number : ”:

{print NR": " $0 }

8. sumthe fourth column of a table:
{sum +=$4}
END {print sum}

In all cases, the inputag a file of 450,000 characters,
in 10,000 lines. Each line contained 8 fields.

Table 1: Timing Comparisons

Task avk lex sed
1 15.0 65.1 10.2
2 25.6 150.1 11.6
3 2.9 144.2 15.8
4 3.3 67.7 29.0
5 38.9 70.3 30.5
6 46.4 1040 16.1
7 71.4 81.7
8 3.1 92.8

For small input files, the predominant speed
problem is simply thatwk is a big program (50K
bytes) and thus takes longer to be loaded than does a
small program.

Clearly there is a limit to the size of file for
which one can economically use linear search. It is an
interesting practical problem to nmkhe program dst
at linear search, but it is also a good research problem
to male it work in a natural way with files stored in
some other @&y, For instance, it is possible to search
for restricted classes of regulakpeession$ without
looking at all the characters; wevearot attempted to
use such an algorithm.

Directions for Futur e Work

Considerable discussion (and compromise) has
gone into the design @fwk. One obvious defect is the
lack of a subroutineatility. This deficieng is not seri-
ous for small, one-time applications, but as users
become more xperienced and sophisticated, the call
for subroutines may become more compellinbhe
trend tavard longer more compl& user programs also
points out the shortcomings of the terse and uninforma-
tive gntax error messages produced by the current
implementation.

The ability to handle numbers, strings angue
lar expressions at the same time seems ve harked
out well. In most cases, each variable has only one
type, and in those cases where coercion is necessary
(most often for comparison), the results are what the
user @pects. ltis true that when the coercion is not the
right one, the results can be mystifying to the uniniti-
ated, but this has happened infrequently enough so as to
have an acceptable cost.

At the momentawk has no explicit command
for text substitution, although some substitutions can be
implemented (clumsily) witlsubstr andlength. Incor-
porating a general xé substitution command euld
affect the type of mular expression matching algo-
rithm used. The algorithm currently used constructs a
compact deterministic finite automaton directly from
the regular gpression. Theautomaton finds the short-
est possible match with no backtrackingThis

approach is good for fast matching but foxttml
replacement it is necessary to isolate the leftmost
longest substring that matchetlVe have also consid-
ered adding a dynamic gelar expression capabiljty
but have not yet found the applications to justify this
inclusion.

tern ranges address only simple aspects of the problem.

tation with a language based awk that has normal

Also under consideration is some way of making
RPG-like “control breaks’ easier to program.In this
kind of data processing, an action isaked when the
value of some field changes from one record to the
next. Thiscan alvays be done with “state variable's ’
but the resulting programs are messy and uncl@at-

Finally, we havealready done somexperimen-

control flov and input statements. This is a very high
level language, which permits arbitrary file manipula-
tions, at the price of soméat more programming for
those cases wheeavk already does the job.

6. CONCLUSIONS

Awk has been used in a broadriety of tasks,

ranging from budget preparation, through telephone
network planning, gen to finding Chinese restaurants

within walking distance of theaters in Manhattalh.
has demonstrated that there is a considerableanfmk
a dand-alone language which enables common data
processing tasks to be done with little programming

effort. Becauseof its ease of usgwk has often been

used to perform bookkeeping and data manipulation
tasks that otherwiseauld hare been done manually or
not done at all.

based on the idea that programs should communicate

The UNIX programming environment is haby

with each other It has been our experience tlzatk is
of considerable help here too, as a data transformer
between a program which produces output in one form
and a second that requires it in some other form. In a
senseawk, like mary other UNIX programs, acts as an
“impedance matchgr adapting one program to
another.

References

1.

D. M. Ritchie and K. Thompson,;The UNix
Time-Sharing Systeth,Bell Sys. &h. J 57(6),
pp.1905-1929 (1978).

B.W. Kernighan and D. M. Ritchi&he C Po-
gramming Languge, Prentice-Hall, Engl&ood
Cliffs, New Jersey (1978).

K. Thompson, D. M. Ritchie, and D. Mclyp
UNIX Programmers Manual, Bell Laboratories
(January 1979). Senth Edition

M. E. Lesk, ‘Lex — A Lexical Analyzer Gener
ator” Comp. Sci. Tech. Rep. No. 3®ell Labo-
ratories, MurrayHill, New Jerseg (D).

5.

S.C. Johnson,'Yacc — Yet Another Compiler
Compiler” Comp. Sci. Tech. Rep. No. 3Bell
Laboratories, Murrafill, New Jersg (D).

R. S. Boyer and J. S. Moore'A* fast string
searching algorithni.,, Comm. Assoc. Comp.
Mach.20, pp.441-452 (Octobeld977).

